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1. n-Dimensional Manifolds

Informally, an n-dimensional manifold is a "space" which locally (when looked at through
a microscope) looks like "flat space" Rn.
Many important examples of manifolds M arise as certain subsets M ⊂ Rk, e.g.:

1. n-dimensional affine subspaces M ⊂ Rk

2. Sn = {x ∈ Rn+1 | x2
0 + · · ·+ x2

n = 1}

3. compact 2-dimensional submanifolds of R3

4. SO(3) = {A ∈ R3×3 | At A = Id} is a 3-dimensional submanifold of R9

Flat spaces (vector spaces ∼= Rn) are everywhere. Curved manifolds come up in Stochastics,
Algebraic Geometry, . . . , Economics and Physics – e.g. as the configuration space of a
pendulum (S2), a double pendulum (S2 × S2) or rigid body motion (SO(3)), or as space
time in general relativity (the curved version of flat special relativity).

1.1 Crash Course in Topology

Definition 1.1 (Topological space). A topological space is a set M together with a subset
O ⊂ P(M) (the collection of all "open sets") such that:

1. ∅, M ∈ O,

2. Uα ∈ O, α ∈ I ⇒ ∪
α∈I

Uα ∈ O,

3. U1, . . . , Un ∈ O,⇒ U1 ∩ · · ·∩Un ∈ O.

Remark 1.2. Usually we suppress the the collection O of open sets and just say M is a
topological space. If several topologies and spaces are involved we use an index to make
clear which topology corresponds to which space.

Some ways to make new topological spaces out of given ones:

a) Let X be a topological space, M ⊂ X, then OM := {U ∩M | U ∈ OX} defines a
topology on M – called "induced topology" or "subspace topology".

b) Let X be a topological space, M be a set, and π : X → M a surjective map. Then there
is a bijection between M and the set of equivalence classes of the equivalence relation
on X defined by

x ∼ y ⇔ π(x) = π(y).
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6 1.1. CRASH COURSE IN TOPOLOGY

In other words: M can be identified with the set of equivalence classes.
Conversely, given an equivalence relation ∼ on a topological space X we can form
the set of equivalence classes M = X/∼. The canonical projection π : X → M is the
surjective map which sends x ∈ X to the corresponding equivalence class [x]. The
quotient topology

OM =
!

U ⊂ M | π−1(U) ∈ OX

"

turns M into a topological space. By construction π is continuous.

Exercise 1.3 (Product topology).
Let M and N be topological spaces and define

B := {U × V | U ∈ OM, V ∈ ON}

Show that

O :=

#
!

U∈A
U | A ⊂ B

$

is a topology on M × N.

Definition 1.4 (Continuity). Let M, N be topological spaces. Then f : M → N is called
continuous if

f−1(U) ∈ OM for all U ∈ ON.

Definition 1.5 (Homeomorphism). A bijective map f : M → N between topological spaces
is called a homeomorphism if f and f−1 are both continuous.

Remark 1.6. If f : M → N is a homeomorphism, then for

U ∈ OM ⇔ f (U) ∈ ON

So two topological spaces are topologically indistinguishable, if they are homeomorphic,
i.e. if there exists a homeomorphism f : M → N.

Definition 1.7 (Hausdorff). A topological space M is called Hausdorff if for all x, y ∈ M with
x ∕= y there are open sets Ux, Uy ∈ O with Ux ∩Uy = ∅.

Example 1.8. The quotient space M = R/ ∼ with x ∼ y ⇔ x − y ∈ Q is not Hausdorff.

Definition 1.9 (Second axiom of countability). A topological space M is said to satisfy
the second axiom of countability (or is called second countable), if there is a countable base of
topology, i.e. there is a sequence of open sets U1, U2, U3, . . . ∈ O such that for every U ∈ O
there is a subset I ⊂ N such that U = ∪

α∈I
Uα.
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Example 1.10. The balls of rational radius with rational center in Rn form a countable base
of topology, i.e. Rn is 2nd countable.

Remark 1.11. Subspaces of second countable spaces are second countable. Hence all sub-
sets of Rn are second countable. A similar statement holds for the Hausdorff property.

Example 1.12. M = R2 with the topology generated by B = {U × {y} | y ∈ R, U ∈ OR} is
not second countable.

Definition 1.13 (Topological manifold). A topological space M is called an n-dimensional
topological manifold if it is Hausdorff, second countable and for every p ∈ M there is an open
set U ∈ O with p ∈ U and a homeomorphism ϕ : U → V, where V ∈ ORn .

Definition 1.14 (coordinate chart). Let M be an n-dimensional topological manifold. Then
a coordinate chart of M is a pair (U, ϕ), where U ⊂ M is open and ϕ : U → V ⊂ Rn is a
homeomorphism onto an open set V ⊂ Rn.

Exercise 1.15.
Let X be a topological space, x ∈ X and n ≥ 0. Show that the following statements are
equivalent:

i) There is a neighborhood of x which is homeomorphic to Rn.

ii) There is a neighborhood of x which is homeomorphic to an open subset of Rn.

Exercise 1.16.
Show that a manifold M is locally compact, i.e. each point of M has a compact neighbor-
hood.

Definition 1.17 (Connectedness). A topological space X is connected if the only subsets of X
which are simultaneously open and closed are X and ∅.
Moreover, X is called path-connected if any two points x, y ∈ X can be joined by a path, i.e.
there is a continuous map γ : [0, 1] → X such that γ(0) = x and γ(1) = y.

Exercise 1.18.
Show that a manifold is connected if and only it is path-connected.
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Definition 1.19 (coordinate change). Given two charts ϕ : U → Rn and ψ : V → Rn, then
the map

f : ϕ(U ∩V) → ψ(U ∩V)

given by
f = ψ ◦ (ϕ|U ∩V)

−1

is a homeomorphism, called the coordinate change or transition map.

Definition 1.20 (Atlas). An atlas of a manifold M is a collection of charts {(Uα, ϕα)}α∈I such
that M = ∪

α∈I
Uα.

1.2 Smooth Manifolds

Definition 1.21 (Compatible charts). Two charts

ϕ : U → Rn, ψ : V → Rn

on a topological manifold M are called compatible if

f : ϕ(U ∩V) → ψ(U ∩V)

is a diffeomorphism, i.e. f and f−1 both are smooth.

Example 1.22. Consider M = Sn ⊂ Rn+1, let B = {y ∈ Rn | ‖y‖ ≤ 1} an define charts as
follows:
For i = 0, . . . , n,

U±
i = {x ∈ S2 | ±xi > 0}, ϕ±

i , : U±
i → B, ϕ±

i (x0, . . . , xn) = (x0, . . . , %xi, . . . , xn),

where the hat means omission. To check that ϕi are homeomorphisms is left as an exercise.
So: (Since Sn as a subset of Rn+1 is Hausdorff and second countable) Sn is an n-dimensional
topological manifold. All ϕ±

i are compatible, so this atlas turns Sn into a smooth manifold.
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An atlas {(Uα, ϕα)}α∈I of mutually compatible charts on M is called maximal if every chart
(U, ϕ) on M which is compatible with all charts in {(Uα, ϕα)}α∈I is already contained in
the atlas.

Definition 1.23 (Smooth manifold). A differentiable structure on a topological manifold M
is a maximal atlas of compatible charts. A smooth manifold is a topological manifold together
with a maximal atlas.

Figure 1.1: This illustration for the case n = 2 is taken from the title page of the book
"Riemannian Geometry" by Manfredo do Carmo (Birkenhäuser 1979).

Exercise 1.24 (Real projective space).
Let n ∈ N and X := Rn+1 \ {0}. The quotient space RPn = X/∼ with equivalence relation
given by

x ∼ y :⇐⇒ x = λy, λ ∈ R

is called the n-dimensional real projective space. Let π : X → RPn denote the canonical projec-
tion x 2→ [x].
For i = 0, . . . , n, we define Ui := π({x ∈ X | xi ∕= 0}) and ϕi : Ui → Rn by

[x0, . . . , xn] 2→ (x0/xi, . . . , %xi, . . . , xn/xi).

Show that

a) π is an open map, i.e. maps open sets in X to open sets in RPn,

b) the maps ϕi are well-defined and {(Ui, ϕi)}i∈I is a smooth atlas of RPn,

c) RPn is compact. Hint: Note that the restriction of π to Sn is surjective.

Exercise 1.25 (Product manifolds).
Let M and N be topological manifolds of dimension m and n, respectively. Show that their
Cartesian product M × N is a topological manifold of dimension m + n.
Show further that, if {(Uα, ϕα)}α∈A is a smooth atlas of M and {(Vβ, ψβ)}β∈B is a smooth
atlas of N, then {(Uα × Vβ, ϕα × ψβ)}(α,β)∈A×B is a smooth atlas of M × N. Here ϕα ×
ψβ : Uα × Vβ → ϕα(Uα)× ψβ(Vβ) is defined by ϕα × ψβ(p, q) := (ϕα(p), ψβ(q)).

Exercise 1.26 (Torus).
Let Rn/Zn denote the quotient space Rn/∼ where the equivalence relation is given by

x ∼ y :⇔ x − y ∈ Zn.

Let π : Rn → Rn/Zn, x 2→ [x] denote the canonical projection. Show:
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a) π is a covering map, i.e. a continuous surjective map such that each point p ∈ Rn/Zn

has a open neighborhood V such that π−1(V) is a disjoint union of open sets each of
which is mapped by π homeomorphically to V.

b) π is an open map.

c) Rn/Zn is a manifold of dimension n.

d) {(π|U)−1 | U ⊂ Rn open, π|U : U → π(U) bijective} is a smooth atlas of Rn/Zn.

Definition 1.27 (Smooth map). Let M and M̃ be smooth manifolds. Then a continuous map
f : M → M̃ is called smooth if for every chart (U, ϕ) of M and every chart (V, ψ) of M̃ the map

ϕ( f−1(V)∩U) → ψ(V), x 2→ ψ( f (ϕ−1(x)))

is smooth.

Definition 1.28 (Diffeomorphism). Let M and M̃ be smooth manifolds. Then a bijective map
f : M → M̃ is called a diffeomorphism if both f and f−1 are smooth.

One important task in Differential Topology is to classify all smooth manifolds up to dif-
feomorphism.
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Example 1.29. Every connected one-dimensional smooth manifold is diffeomorphic to R

or S1. Examples of 2-dimensional manifolds: [pictures missing: compact genus 0,1,2,...
Klein bottle, or torus with holes (non-compact)] - gets much more complicated already. For
3-dimensional manifolds there is no list.

Exercise 1.30. Show that the following manifolds are diffeomorphic.

a) R2/Z2.

b) the product manifold S1 × S1.

c) the torus of revolution as a submanifold of R3:

T =
&
((R + r cos ϕ) cos θ, (R + r cos ϕ) sin θ, r sin ϕ) | ϕ, θ ∈ R

'
.

1.3 Submanifolds

Definition 1.31 (Submanifold). A subset M ⊂ M̃ in a k-dimensional smooth manifold M̃ is
called an n-dimensional submanifold if for every point p ∈ M there is a chart ϕ : U → V of M̃
with p ∈ U such that

ϕ(U ∩M) = V ∩(Rn × {0}) ⊂ Rk.

Let us briefly restrict attention to M̃ = Rk.
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Theorem 1.32. Let M ⊂ Rk be a subset. Then the following are equivalent:

a) M is an n-dimensional submanifold,

b) locally M looks like the graph of a map from Rn to Rk−n, which means: For every point
p ∈ M there are open sets V ⊂ Rn and W ⊂ M, W ∋ p, a smooth map f : V → Rk−n

and a coordinate permutation π : Rk → Rk, π(x1, ..., xk) = (xσ1 , ..., xσk) such that

π(W) = {(x, f (x)) | x ∈ V},

c) locally M is the zero set of some smooth map into Rk−n, which means: For every p ∈ M
there is an open set U ⊂ Rk, U ∋ p and a smooth map g : U → Rk−n such that

M∩U = {x ∈ U | g(x) = 0}

and the Jacobian g′(x) has full rank for all x ∈ M∩U,

d) locally M can be parametrized by open sets in Rn, which means: For every p ∈ M there are
open sets W ⊂ M, W ∋ p, V ⊂ Rn and a smooth map ψ : V → Rk such that ψ maps V
bijectively onto W and ψ′(x) has full rank for all x ∈ V.

Remark 1.33.
First, recall two theorems from analysis:

The inverse function theorem:
Let U ⊂ Rn be open, p ∈ U, f : U → Rn continuously differentiable, det f ′(p) ∕= 0.
Then there is a an open’ subset Ũ ⊂ U, Ũ ∋ p and an open subset V ⊂ Rn, V ∋ f (p)
such that

1. f |Ũ : Ũ → V is bijective,

2. f |−1
Ũ : V → Ũ is continuously differentiable.

We have ( f−1)′(q) = f ′( f−1(q))−1 for all q ∈ V. We in fact need a version where
’continuously differentiable’ is replaced by C ∞. Let us prove the C 2 version. Then all
the partial derivatives of first order for f−1 are entries of ( f−1)′. So we have to prove
that q 2→ ( f−1)′(q) = ( f ′)−1( f−1(q)) is continuously differentiable. This follows from
the smoothness of the map GL(n, R) ∋ A 2→ A−1 ∈ GL(n, R) (Cramer’s rule), the
chain rule and the fact that f ′ : Ũ → Rn×n is continuously differentiable. The general
case can be done by induction.

The implicit function theorem (C ∞ − version)
Let U ⊂ Rk be open, p ∈ U, g : U → Rk−n smooth, g(p) = 0, g′(p) is surjective. Then,
after reordering the coordinates of Rk, we find open subsets V ⊂ Rn, W ⊂ Rn−k such
that (p1, . . . , pn) ∈ V and (pn+1, . . . , pk) ∈ W and V × W ⊂ U. Moreover, there is a
smooth map f : V → W such that {q ∈ V × W | g(q) = 0} = {(x, f (x)) | x ∈ V}.

Proof. (of Theorem 1.32)

(b) ⇒ (a): Let p ∈ M. By b) after reordering coordinates in Rk we find open sets V ∈ Rn,
W ⊂ Rk−n such that p ∈ V × W and we find a smooth map f : V → W such that
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(V × W)∩M = {(x, f (x)) | x ∈ V}. Then

ϕ : V × W → Rk, (x, y) 2→ (x, y − f (x))

is a diffeomorphism and ϕ(M∩(V × W)) ⊂ Rn × {0}.

(a) ⇒ (c): Let p ∈ M. By a) we find an open U ∈ Rk, U ∋ p and a diffeomorphism
ϕ : U → Û ⊂ Rk such that ϕ(U ∩M) ⊂ Rn × {0}. Now define g : U → Rk−n to
be the last k − n component functions of ϕ, i.e. ϕ = (ϕ1, . . . , ϕn, g1, . . . , gk−n). Then
M∩(V × W) = g−1({0}). For q ∈ V × W we have

ϕ′(q) =

(

)))))))*

∗
...
∗

g′1(q)
...

g′k−n(q)

+

,,,,,,,-

.

Hence g′ has rank k − n.

(c)⇒ (b): This is just the implicit function theorem.

(b)⇒ (d): Let p ∈ M. After reordering the coordinates by b) we have an open neighborhood
of p of the form V × W and a smooth map f : V → W such that

M∩(V × W) = {(x, f (x)) | x ∈ V}.

Now define ψ : V → Rk by ψ(x) = (x, f (x)), then ψ is smooth

ψ′(x) =
.

IdRn

f ′(x)

/

So ψ′(x) has rank n for all x ∈ V. Moreover, ψ(V) = M∩(V × W).

(d) ⇒ (b): Let p ∈ M. Then by d) there are open sets V̂ ⊂ Rn, U ⊂ Rk, U ∋ p and a
smooth map ψ : V̂ → Rk such that ψ(V̂) = M∩U such that rank ψ′(x) is n for all
x ∈ V̂. After reordering the coordinates on Rk we can assume that ψ = (φ, f̂ )t with
φ : V̂ → Rn with det φ′(x0) ∕= 0, where ψ(x0) = p. Passing to a smaller neighborhood
V ⊂ V̂, V ∋ p, we then achieve that φ : V → φ(V) is a diffeomorphism (by the inverse
function theorem). Now for all y ∈ φ(V) we have

ψ(φ−1(y)) =
.

φ(φ−1(y)
f̂ (φ−1(y))

/
=:

.
y

f (φ−1(y))

/
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1.3.1 Examples of submanifolds in Rk

n-dimensional unit sphere

Sn = {x ∈ Rn+1 | x2
1 + x2

2 + · · ·+ x2
n+1 = 1}

is an n-dimensional submanifold (a hypersurface) of Rn+1, because

Sn = {x ∈ Rn+1 | g(x) = 0}

where
g : Rn+1 → R, g(x) = x2

1 + x2
2 + · · · x2

n+1 − 1

We now have to check that g′(x) has rank 1 on g−1({0}): We easily see that g′(x) =
2x ∕= 0 for x ∕= 0.

orthogonal-group
O(n) ⊂ Rn×n = Rn2

defined by

O(n) = {A ∈ Rn×n | At A = I}

is a submanifold of Rn2
of dimension n(n − 1)/2.

Define
g : Rn×n → Sym(n) = Rn(n−1)/2, A 2→ g(A) = At A − I

Then (

)))*

a11 a12 · · · a1n
∗ a22 · · · a1n
... . . . ...
∗ ∗ · · · ann

+

,,,-

The number of entries above and including the diagonal is

n + (n + 1) + · · ·+ 2 + 1 = n(n − 1)/2

So we still need to check that g′(A) : Rn×n → Sym(n) is surjective for all A ∈ O(n).

Interlude: Consider derivatives of maps f : U → Rm, where U ⊂ Rk open. Then
f ′(p) : Rk → Rm is linear. But how to calculate f ′(p)X for X ∈ Rk?
Choose some smooth

γ : (−ε, ε) → Rk

such that γ(0) = p and γ′(0) = X. Then by the chain rule

( f ◦ γ)′(0) = f ′(γ(0))γ′(0) = f ′(p)X.

So let A ∈ O(n), X ∈ Rn×n, B : (−ε, ε) → Rn×n with B(0) = A, B′(0) = X (e.g.
B(t) = A + tX).
Then

g′(A)X = d
dt

000
t=0

g(B(t))

= d
dt

000
t=0

[B(t)tB(t)− I]

= (Bt)′(0)B(0) + Bt(0)B′(0)

= Xt A + AtX.
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which is the end of the interlude.
To check that g′(A) is surjective, let Y ∈ Sym(n) be arbitrary. So Y ∈ Rn×n,
Yt = Y. There is X ∈ Rn×n with Xt A + AtX = Y, e.g. X = 1

2 AY:
By a straightforward calculation we yield

Xt A + AtX = 1
2(Y

t At A + At AY) = Y.

So O(n) is a submanifold dimension n2 − n(n+1)
2 = n(n−1)

2 .

The Grassmanian of k-planes
Consider the set

Gk(R
n) := {k-dimensional linear subspace}

the set of k-dimensional linear subspaces of Rn. We represent a linear subspace U ⊂
Rk by the orthogonal projection PU ∈ Rn×n onto U. The map PU is defined by

PU|U = IdU, PU|U⊥ = 0 (1.1)

PU has the following properties:

P2
U = PU, P∗

U = PU, tr PU = dim U

In the decomposition Rn = U ⊕ U⊥, we have

PU =

.
IdU 0

0 0

/
.

Conversely: If P∗ = P, then there is an orthonormal basis of Rn with respect to which
P is diagonal. (

)*
λ1

. . .
λn

+

,- .

If further P2 = P, then λ2
i = λi ⇔ λi ∈ {0, 1} for all i ∈ {1, . . . , n}. After reordering

the basis we have .
Ik 0
0 0

/

for some k < n. So P is the orthogonal projection onto a k-dimensional subspace with
k = tr P.
Thus we have

Gk(R
n) = {P ∈ End(Rn) | P2 = P, P∗ = P, trace P = k}.

We fix a k-dimensional subspace V and define

WV := {L ∈ End(Rn) | PV ◦ L|V invertible}.

Since WV is open, the intersection Gk(R
n)∩WV is open in the subspace topology.

Fix a k-dimensional subspace V ⊂ Rn. Then a k-dimensional subspace U ⊂ Rn ’close’
to V is the graph of a linear map Y ∈ Hom(V, V⊥):
With respect to the splitting Rn = V ⊕ V⊥,

U = Im
.

IdV
Y

/
= {(x, Yx) | x ∈ V}.
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The orthogonal complement U⊥ of U is then parametrized over V⊥ by (−Y∗, IdV⊥).
For x ∈ V and y ∈ V⊥ we have

1. x
Yx

/
,
.
−Y∗y

y

/2
= 〈x,−Y∗y〉+ 〈x, Yy〉 = 0

Since rank (−Y, IdV⊥) is n − k, we get

U⊥ = Im
.
−Y∗

IdV⊥

/
.

Further, since the corresponding orthogonal projection PU is symmetric we can write

PU =

.
A B∗

B C

/
,

with A∗ = A, B∗ = B. Explicitly A = PV ◦ S|V , B = PV⊥ ◦ S|V and C = PV⊥ ◦ S|V⊥ .

From Equation (1.1) we get
.

IdV
Y

/
= PU

.
IdV
Y

/
=

.
A + B∗Y
B + CY

/
, 0 = PU

.
−Y∗

IdV⊥

/
=

.
−AY∗ + B∗

−BY∗ + C

/
.

In particular, Y∗ = A−1B∗ and, since A is self-adjoint,

Y = BA−1 (1.2)

If we plug this relation into the equation IdV = A + B∗Y we get

IdV = A(IdV + Y∗Y)

Since 〈Y∗Yx, x〉 = 〈Yx, Yx〉 ≥ 0 the map IdV + Y∗Y is always invertible.
This yields

A = (IdV + Y∗Y)−1

In particular, PU ∈ WV ∩Gk(R
n). Further, since AY∗ = B∗, we get that

B = Y(IdV + Y∗Y)−1

and, together with C = BY∗ we yield

C = Y(IdV + Y∗Y)−1Y∗

Hence

PU =

.
(IdV + Y∗Y)−1 (IdV + Y∗Y)−1Y∗

Y(IdV + Y∗Y)−1 Y(IdV + Y∗Y)−1Y∗

/
∈ WV ∩Gk(R

n). (1.3)

Equation (1.3) actually defines a smooth map

φ : Hom(V, V⊥) → WV ∩Gk(R
n)

with left inverse given by Equation (1.2), which is smooth on WV , hence φ is surjective
and has full rank. Thus Gk(R

n) is locally parametrized by Hom(V, V⊥) ∼= Rk·(n−k).
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Figure 1.2: One possibility to visually identify G1(R
3) and RP2.

Theorem 1.34. The Grassmannian Gk(R
n) of k-planes in Rn (represented by the orthogonal

projection onto these subspaces) is a submanifold of dimension k(n − k).

Exercise 1.35.
Show that G1(R

3) ⊂ Sym(3) is diffeomorphic to RP2.

Exercise 1.36 (Möbius band).
Show that the Möbius band (without boundary)

M =
&
((2 + r cos ϕ

2 ) cos ϕ, (2 + r cos ϕ
2 ) sin ϕ, r sin ϕ

2 ) | r ∈ (− 1
2 , 1

2), ϕ ∈ R
'

is a submanifold of R3. Show further that for each point p ∈ RP2 the open set RP2 \ {p} ⊂
RP2 is diffeomorphic to M.

1.4 Tangent Spaces in Rk

Definition 1.37. Let M ⊂ Rk be an n-dimensional submanifold and p ∈ M. Then X ∈ Rk

is called a tangent vector of M at p if there is a smooth map γ : (−ε, ε) → M ⊂ Rk such that
γ(0) = p and γ′(0) = X.

Figure 1.3: A tangent vector of M at p together with a curve γ.

Remark 1.38. Note that the smoothness of the map γ in the above definition is understood
as smooth map to Rk.
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Definition 1.39. The set of tangent vectors of M at a point p is called the tangent space TpM
of M at p.

Theorem 1.40. If M ⊂ Rk is an n-dimensional submanifold and p ∈ M, then TpM is an
n-dimensional linear subspace of Rk.

Proof. We male use of d) the equivalent definitions of submanifols of theorem 1.32 to obtain
an open set U ⊂ Rn, q ∈ U and a smooth map ψ : U → M ⊂ Rk such that ψ(q) = p and
dim ψ′(q)Rn = rank ψ′(q) = n. Here

ψ′(q)Rn := {ψ′(q)X | X ∈ Rn}.

For y ∈ Rn define a curve as follows: Choose ε > 0 small enough such that q + tY ∈ U for
t ∈ (−ε, ε) and define

γ : (−ε, ε) → M, t 2→ γ(t) := ψ(q + tY).

Figure 1.4: Construction of γ by mapping a straight line segment in U.

By the chain rule: γ′(0) = ψ′(q)Y, hence by definition ψ′(q)Y = γ′(0) ∈ TpM. As Y was
arbitrary we yield

ψ′(q)Rn = {ψ′(q)X | X ∈ Rn} ⊂ TpM.

We note that {ψ′(q)X | X ∈ Rn} is a linear subspace of Rk as ψ′(q) has full rank.
Now we use c) of theorem 1.32 to find an open set W ⊂ Rk , p ∈ W and a smooth map
g : W → Rk−n such that g(x) = 0 for all x ∈ W ∩ M and g′(p) has rank k − n. If we now
take X ∈ TpM it comes with a curve γ : (−ε, ε) → M such that γ(0) = p and γ′(0) = X.
Then with g ◦ γ(0) = g(p) = 0 and the chain rule:

0 = g′(p) = g′(γ(0))γ′(0) = g′(γ(0))X,

so that X ∈ ker g′(p). As ker g′(p) is a linear subspace of Rk with dimension n we en up
with

im ψ′(q) ⊂ TpM ⊂ ker g′(p).

As the left and the right hand side of this inclusion are linear subspaces of the same di-
mension, im ψ′(q) ⊂ ker g′(p) implies that

im ψ′(q) = TpM = ker g′(p).
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1.5 Matrix Lie Groups

Although we take, for our purposes, an “efficient” approach to Lie Groups by considering
subgroups of GL(n, R), we also want to give the general definition:

Definition 1.41. A set G with a map

∗ : G × G → G, (x, y) 2→ x ∗ y := xy

is called a group if

1. (xy)z = x(yz) for all x, y, z ∈ G.

2. There is e ∈ G such that for all x ∈ G we have ex = xe = x.

3. For every x ∈ G there is x−1 ∈ G such that x−1x = xx−1 = e.

Definition 1.42. A Lie group is a group G which is also a manifold such that the maps

∗ : G × G → G, (x, y) → xy

( )−1 : G → G, x 2→ x−1

are smooth.

The most important example for us will be general linear group

Gl(n, R) := {A ∈ Rn×n | det A ∕= 0}

is an open set in Rn×n and therefore a manifold. The group multiplication is matrix mul-
tiplication and therefore smooth. The same holds for A 2→ A−1, it can for instance be
explicitly computet by Cramer’s rule. Note that, as an open set of Rn×n ∼= Rn2

, we only
need a single coordinate chart.

Definition 1.43. A Lie subgroup of a lie group G is a submanifold H ⊂ G which is also a
subgroup of G:

x, y ∈ H =⇒ xy ∈ H

x ∈ H =⇒ x−1 ∈ H

Exercise 1.44. Check that a Lie subgroup naturally has the structure of a Lie-group itself.

Definition 1.45. A Lie subgroup of GL(n, R) is called a matrix Lie group.

Example 1.46.

1. The orthogonal group O(n) is a matrix Lie group.
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2. SO(n, R) := {A ∈ Rn×n | det A = 1} is the “special linear group”. Clearly this is a
subgroup of GL(n, R). By defining

g : Rn×n → R, A 2→ det A − 1

we see that SO(n, R) is the zeroset of g. It remains to check that

g(A) = 0 =⇒ g′(A) ∕= 0.

Then part c) of theorem 1.32 yields the claim. For A ∈ SO(n, R) and Y ∈ Rn×n choose
B : (−ε, ε) → Rn×n with B(0) = A and B′(0) = Y. for example B(t) = a + tY. Then,
with A = (a1, . . . , an) and B = (b1, . . . , bn) by definition of the directional derivative
and the product rule

g′(A)(X) =
d
dt

0000
t=0

g(B(t))

=
d
dt

0000
t=0

[det B(t)− 1]

=
d
dt

0000
t=0

[det(b1(t), . . . , bn(t))− 1]

= det
3
b′1(0), a2, . . . , an

4
+ . . . + det

3
a1, . . . , an−1, b′n(0)

4

As the colums of A are by assumption linearly independent we can write for every
j ∈ {1, . . . , n}

b′j(0) =
n

∑
k=1

xkjak =
n

∑
k=1

akxkj.

Writing this in matrix form gives

B′(0) = AX

where

X =

(

)*
x11 . . . x1n

...
...

xn1 . . . xnn

+

,- ,

in other words: X = A−1B′(0). Hence

d
dt

0000
t=0

g(B(t)) = det

5
n

∑
k=1

xk1ak, a2, . . . , an

6
+

...

+ det

5
a1, . . . , an−1,

n

∑
k=1

xknak

6

= tr(X)det(A)

Choose now any X ∈ Rn×n with tr(X) ∕= 0 and define Y := AX, then

g′(A)(Y) = tr(X) ∕= 0.

Therefore SL(n, R) is an (n2 − 1)-dimensional submanifold of Rn×n.
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3. The “special orthogonal group”

SO(n) := O(n) ∩ SL(n, R)

is a matrix Lie group of dimension n(n−1)
2 .

Figure 1.5: The tangent space TIG at the identity is the Lie algebra.

The tangent space of a Lie group G is commonly written as the same letters in fracutred
font g.

Definition 1.47. If G ⊂ Rn×n is a matrix Lie group, then then tangent space g := TiG is
called the Lie algebra of G.

Remark 1.48. We’ve already shown that the Lie algebra is a vector space.

Definition 1.49. A Lie algebra is a real vector space g togehter with a bilinear map

[·, ·] : g× g → g

such that for all X, Y, Z ∈ g:

1. [X, Y] = −[Y, X] (skew-symmetry).

2. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi-identity).

Example 1.50. Consider g = Rn×n = TIGL(n, R) then

[X, Y] := XY − YX.

Then obviously
[X, Y] = −[Y, X]

and

[X, [Y, Z]] = X(YZ − ZY)− (YZ − ZY)X = XYZ − XZY − YZX + ZYX

so that adding the cyclic permutations yields the Jacobi-identity.
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Definition 1.51. If g is a Lie algebra and h ⊂ g is a linear subspace. Then h is called a Lie
subalgebra if

X, Y ∈ h =⇒ [X, Y] ∈ h.

Lemma 1.52. B : (a, b) → GL(R) smooth, then for all t ∈ (a, b)
7

B−1
8′

= −B−1B′B−1.

Proof. We differentiate the equality B−1B = I:

(B−1)′B + B−1B′ = 0 ⇔ (B−1)′ = −B−1B′B−1.

Theorem 1.53. If G ⊂ GL(n, R) is a matrix Lie group, then g = TIG is a Lie subalgebra of
Rn×n with the standard cummutator as defined above.

Proof. Let X, Y ∈ TIG. We have to show that XY − YX ∈ TIG. By the definition of tangent
vectors we can choose A, B : (−ε, ε) → G auch that A(0) = B(0) = I and A′(0) = X and
B′(0) = Y.

We first show that for all t ∈ (−ε, ε) we have that

B(t)−1XB(t) ∈ TIG = g.

To this end define C : (−ε, ε) → G by

C(s) := B−1(t)A(s)B(t).

Then
C(0) = B−1(t)IB(t) = I,

hence (as B(t) is constant in s)

C′(0) = B−1(t)XB(t).
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Therefore
B−1(t)XB(t) ∈ TIG = g

for all t ∈ (−ε, ε).

Moreover,

g ∋ d
dt

0000
t=0

7
B−1(t)XB(t)

8
= (−B−1(0)B′(0)B−1(0))XB(0) + B−1(0)XB′(0)

= −YX + XY
= [X, Y].

Example 1.54. For G = SO(n) it is

TIG = so(n) = {X ∈ Rn×n | XT = −X}.

Then for X, Y ∈ so(n) we have

[X, Y]T = (XY − YX)T = YTXT − XTYT = YX − XY = −[X, Y]

hence [X, Y] ∈ so(n).



2. The Tangent Bundle

2.1 Tangent Vectors

Let M be an n-dimensional smooth manifold. We will define for each p ∈ M an n-
dimensional vector space TpM, the tangent space of M at p.

Definition 2.1 (Tangent space). Let M be a smooth n-manifold and p ∈ M. A tangent vector
X at p is then a linear map

X : C ∞(M) → R, f 2→ X f

such that there is a smooth curve γ : (−ε, ε) → M with γ(0) = p and

X f = ( f ◦ γ)′(0).

The tangent space is then the set of all tangent vectors TpM := {X | X tangent vector at p}.

Let ϕ = (x1, . . . , xn) be a chart defined on U ∋ p. Let f̃ = f ◦ ϕ−1, γ̃ = ϕ ◦ γ and p̃ = ϕ(p).
Then

X f = ( f ◦ γ)′(0) = ( f̃ ◦ γ̃)′(0) =
3
∂1 f̃ ( p̃), . . . , ∂n f̃ ( p̃)

4
(

)*
γ̃′

1(0)
...

γ̃′
n(0)

+

,- .

So tangent vectors can be parametrized by n numbers αi = γ̃′
i(0):

X f = α1∂1 f̃ ( p̃) + · · ·+ αn∂n f̃ ( p̃).

Exercise 2.2.
Within the setup above, show that to each vector α ∈ Rn, there exists a curve γ : (−ε, ε) →
M such that γ(0) = p and ( f ◦ γ)′(0) = α1∂1 f̃ ( p̃) + · · ·+ αn∂n f̃ ( p̃).

24
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Definition 2.3 (Coordinate frame). If ϕ = (x1, . . . , xn) is a chart at p ∈ M, f ∈ C ∞(M).
Then

∂

∂xi

0000
p

f := ∂i( f ◦ ϕ−1)(ϕ(p)), i = 1, . . . , n

is called a coordinate frame of TpM at p.

Interlude: How to construct C ∞ functions on the whole of M?
Toolbox: f : R → R with

f (x) =
9

0 for x ≤ 0,
e−1/x for x > 0.

is C ∞ and so is then g(x) = f (1 − x2) and h(x) =
" x

0
g. From h this we can build

a smooth function ĥ : R → [0, 1] with ĥ(x) = 1 for x ∈ [− 1
4 , 1

4 ] and ĥ(x) = 0 for
x ∈ R \ (−1, 1). Then we can define a smooth function h̃ : Rn → R by h̃(x) =
ĥ(x2

1 + · · · x2
n) which vanishes outside the unit ball and is constant = 1 inside the ball

of radius 1
2 .

Theorem 2.4. Let M be a smooth n-manifold, p ∈ M and (U, ϕ) a chart with U ∋ p. Let
a1, . . . , an ∈ R. Then there is f ∈ C ∞(M) such that

∂

∂xi

0000
p

f = ai, i = 1, . . . , n.

Proof. We define g̃ : Rn → R, g̃(x) = h̃(λ(x − ϕ(p))) with λ such that g̃(x) = 0 for all
x ∕∈ ϕ(U). Then let

f̃ : Rn → R, f̃ (x) := g̃(x)(a1x1 + a2x2 + · · ·+ anxn)

Then f : M → R given by

f (q) =
9

f̃ (ϕ(q)) for q ∈ U,
0 for q ∕∈ U

is such a function.

Corollary 2.5. The set of vectors ∂
∂x1

000
p

, . . . , ∂
∂xn

000
p

is linearly independent.

Corollary 2.6. TpM ⊂ C ∞(M)∗ is an n-dimensional linear subspace.

Proof. Follows from the last corollary and from Exercise 2.2, which shows that TpM is a

subspace spanned by ∂
∂x1

000
p

, . . . , ∂
∂xn

000
p
.
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Theorem 2.7 (Transformation of coordinate frames). If (U, ϕ) and (V, ψ) are charts with
p ∈ U ∩V, ϕ|U ∩V = Φ ◦ ψ|U ∩V . Then for every X ∈ TpM,

X = ∑ ai
∂

∂xi

0000
p
= ∑ bi

∂

∂yi

0000
p

,

where ϕ = (x1, . . . , xn), ψ = (y1, . . . , yn), we have
(

)*
a1
...

an

+

,- = Φ′(ψ(p))

(

)*
b1
...

bn

+

,- .

Proof. Let γ : (−ε, ε) → M such that X f = ( f ◦ γ)′(0). Let γ̃ = ϕ ◦ γ and γ̂ = ψ ◦ γ, then

a = γ̃′(0), b = γ̂′(0).

Let Φ : ψ(U ∩V) → ϕ(U ∩V) be the coordinate change Φ = ϕ ◦ ψ−1. Then

γ̃ = ϕ ◦ γ = Φ ◦ ψ ◦ γ = Φ ◦ γ̂.

In particular,
a = γ̃′(0) = (Φ ◦ γ̃)′(0) = Φ′(ψ(p))γ̂′(0) = Φ′(ψ(p))b.

Definition 2.8. Let M and M̃ be smooth manifolds, f : M → M̃ smooth, p ∈ M. Then define
a linear map dp f : TpM → T f (p)M̃ by setting for g ∈ C ∞(M̃) and X ∈ TpM

dp f (X)g := X(g ◦ f ).

Remark 2.9. dp f (X) is really a tangent vector in TpM̃ because, if X corresponds to a curve
γ : (−ε, ε) → M with γ(0) = p then

dp f (X)g =
d
dt

0000
t=0

(g ◦ f ) ◦ γ =
d
dt

0000
t=0

g ◦ ( f ◦ γ
: ;< =
=:γ̃

) =
d
dt

0000
t=0

g ◦ γ̃.

Notation:
The tangent vector X ∈ TpM corresponding to a curve γ : (−ε, ε) → M with γ(0) = p
is denoted by X =: γ′(0).

Theorem 2.10 (Chain rule). Suppose g : M → M̃, f : M̃ → M̂ are smooth maps, then

dp( f ◦ g) = dg(p) f ◦ dpg.
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Definition 2.11 (Tangent bundle). The set

TM := ⊔
p∈M

TpM

is called the tangent bundle of M. The map

π : TM → M, TpM ∋ X → p

is called the projection map. So TpM = π−1({p}).

Most elegant version of the chain rule:
If f : M → M̃ is smooth, then d f : TM → TM̃ where d f (X) = dπ(X) f (X). With this
notation,

d( f ◦ g) = d f ◦ dg.

Theorem 2.12. If f : M → M̃ is a diffeomorphism then for each p ∈ M the map

dp f : TpM → T f (p)M̃

is a vector space isomorphism.

Proof. f is bijective and f−1 is smooth, IdM = f−1 ◦ f . For all p ∈ M,

IdTpM = dp(IdM) = d f (p) f−1 ◦ dp f .

So dp f is invertible.

Theorem 2.13 (Manifold version of the inverse function theorem).
Let f : M → M̃ be smooth, p ∈ M with dp f : TpM → T f (p)M̃ invertible. Then there are open
neighborhoods U ⊂ M of p and V ⊂ M̃ of f (p) such that f |U : U → V is a diffeomorphism.

Proof. The theorem is a reformulation of the inverse function theorem.

Theorem 2.14 (Submersion theorem). Let f : M̃ → M̂ be a submersion, i.e. for each p ∈ M̃
the derivative dp f : TpM̃ → T f (p)M̂ is surjective. Let q = f (p) be fixed. Then

M := f−1({q})

is an n-dimensional submanifold of M̃, where n = dim M̃ − dim M̂.
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Remark 2.15. The sumbersion theorem is a manifold version of the implicit function theo-
rem.

Proof. Take charts and apply Theorem 1.32.

Theorem 2.16 (Immersion theorem). Let f : M → M̃ be an immersion, i.e. for every p ∈ M
the differential dp f : TpM → T f (p)M̃ is injective. Then for each p ∈ M there is an open set
U ⊂ M with U ∋ p such that f (U) is a submanifold of M̃.

Proof. Take charts and apply Theorem 1.32.

Is there a global version, i.e. without passing to U ⊂ M? Assuming that f is injective is not
enough.

Figure 2.1: Example of an injective immersion that is no submanifold.

Exercise 2.17.
Let f : N → M be a smooth immersion. Prove: If f is moreover a topological embedding, i.e.
its restriction f : N → f (N) is a homeomorphism between N and f (N) (with its subspace
topology), then f (N) is a smooth submanifold of M.

Exercise 2.18.
Let M be compact, f : M → M̃ an injective immersion, then f (M) is a submanifold.

Exercise 2.19.
Let X := C2 \ {0}. The complex projective plane is the quotient space CP1 = X/∼, where
the equivalence relation is given by

ψ ∼ ψ̃ :⇔ λψ = ψ̃, λ ∈ C.

Consider S3 ⊂ R4 ∼= C2, then the Hopf fibration is the map

π : S3 → CP1, ψ 2→ [ψ].

Show: For each p ∈ CP1 the fiber π−1({p}) is a submanifold diffeomorphic to S1.
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2.2 The tangent bundle as a smooth vector bundle

Let M be a smooth n-manifold, p ∈ M. The tangent space at p is an n-dimensional subspace
of (C ∞(M))∗ given by

TpM = {X ∈ (C ∞(M))∗ | ∃γ : (−ε, ε) → M, γ(0) = p, X f = ( f ◦γ)′(0) = X f , ∀ f ∈ C ∞(M)}

The tangent bundle is then the set
TM = ⊔

p∈M
TpM

and comes with a projection

π : TM → M, TpM ∋ X 2→ p ∈ M.

The set π−1({p}) = TpM is called the fiber of the tangent bundle at p.

Goal: We want to make TM into a 2n-dimensional manifold.

If ϕ = (x1, . . . , xn) be a chart of M defined on U ∋ p. Then we have a basis ∂
∂x1

000
p

, . . . , ∂
∂xn

000
p

of TpM. So there are unique y1(X), . . . , yn(X) ∈ R such that

X = ∑ yi(X)
∂

∂xi

0000
p

.

Let {(Uα, ϕα)}α∈A be a smooth atlas of M. For each α ∈ A we get an open set Ûα :=
π−1(Uα) and a function yα : Ûα → Rn which maps a given vector to the coordinates yα =
(yα,1, . . . , yα,n) with respect to the frame defined by ϕα.

Now, we define
ϕ̂α : π−1(U) → Rn × Rn = R2n

by
ϕ̂α = (ϕα ◦ π, yα).

For any two charts we have a transition map φαβ : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ) such that
ϕβ

00
Uα ∩Uβ

= φαβ ◦ ϕα|Uα ∩Uβ
. The chain rule yields:

yβ(X) = φ′
αβ(ϕα(π(X)))yα(X).

Hence we see that ϕ̂β ◦ ϕ̂−1
α is a diffeomorphism.

Topology on TM:

OTM :=
&

W ⊂ TM | ϕ̂α(W ∩ Ûα) ∈ OR2n for all α ∈ A
'

.
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Exercise 2.20.

a) This defines a topology on TM.

b) With this topology TM is Hausdorff and 2nd-countable.

c) All ϕ̂α are homeomrophisms onto their image.

Because coordinate changes are smooth, this turns TM into a smooth 2n-dimensional man-
ifold.

Definition 2.21 (Vector field). A (smooth) vector field on a manifold M is a smooth map

X : M → TM

with π ◦ X = IdM i.e. X(p) ∈ TpM for all p ∈ M.

Remark 2.22. Usually we write Xp instead of X(p). If X is a vector field and f ∈ C ∞(M),
then X f ∈ C ∞(M) is given by (X f )(p) = Xp f .
Read: "X differentiates f ".

Exercise 2.23.
Show that each of the following conditions is equivalent to the smoothness of a vector field
X as a section X : M → TM:
a) For each f ∈ C ∞(M), the function X f is also smooth.

b) If we write X|U =: ∑ vi
∂

∂xi
in a coordinate chart ϕ = (x1, . . . , xn) defined on U ⊂ M,

then the components vi : U → R are smooth.

Exercise 2.24.
On S2 = {x = (x0, x1, x2) | ‖x‖ = 1} ⊂ R3 we consider coordinates given by the stereo-
graphic projection from the north pole N = (1, 0, 0):

y1 = x1
1−x0

, y2 = x2
1−x0

.

Let the vector fields X and Y on S2 \ {N} be defined in these coordinates by

X = y2
∂

∂y1
− y1

∂
∂y2

, Y = y1
∂

∂y1
+ y2

∂
∂y2

.

Express these two vector fields in coordinates corresponding to the stereographic projection
from the south pole S = (−1, 0, 0).

Exercise 2.25.
Prove that the tangent bundle of a product of smooth manifolds is diffeomorphic to the
product of the tangent bundles of the manifolds. Deduce that the tangent bundle of a torus
S1 × S1 is diffeomorphic to S1 × S1 × R2.



3. Vector bundles

Definition 3.1 (Vector bundle). A smooth vector bundle of rank k is a triple (E, M, π) which
consists of smooth manifolds E and M and a smooth map

π : E → M

such that for each p ∈ M

(i) the fiber Ep := π−1({p}) has the structure of a k-dimensional vector space

(ii) each p ∈ M has an open neighborhood U ⊂ M such that there exists a diffeomorphism

φ : π−1(U) → U × Rk

such that πU ◦ φ = π and for each p ∈ M the restriction πRk ◦ φ|Ep
is a vector space

isomorphism.

Definition 3.2 (Section). Let E be a smooth vector bundle over M. A section of E is a smooth
map ψ : M → E such that π ◦ ψ = IdM.

Γ(E) := {ψ : M → E | ψ section of E}

Example 3.3.

a) We have seen that the tangent bundle TM of a smooth manifold is a vector bundle of
rank dim M. Its smooth sections were called vector fields.

b) The product M × Rk is called the trivial bundle of rank k. Its smooth sections can be
identified with Rk-valued functions. More precisely, if π2 : M × Rk → Rk, then

Γ(M × Rk) ∋ ψ ←→ f := π2 ◦ ψ ∈ C ∞(M).

From now on we will keep this identification in mind.

Ways to make new vector bundles out of old ones
General principle: Any linear algebra operation that given new vector spaces out of given
ones can be applied to vector bundles over the same base manifold.

Example 3.4.
Let E be a rank k vector bundle over M and F be a rank ℓ vector bundle over M.
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a) Then E ⊕ F denotes the rank k + ℓ vector bundle over M the fibers of which are given
by (E ⊕ F)p = Ep ⊕ Fp.

b) Then Hom(E, F) denotes the rank k · ℓ vector bundle over M with fiber given by
Hom(E, F)p := { f : Ep → Fp | f linear}.

c) E∗ = Hom(E, M × R) with fibers (E∗)p = (Ep)
∗.

Let E1, . . . .Er, F be vector bundles over M.

d) Then a there is new vector bundle E∗
1 ⊗ · · ·⊗ E∗

r ⊗ F of rank rankE1 · · · rankEr · rankF
with fiber at p given by E∗

1p ⊗ · · ·⊗E∗
rp ⊗Fp = {β : E1p × . . .×Erp → Fp | β multilinear}.

Exercise 3.5.
Give an explicit description of the (natural) bundle charts for the bundles (written down as
sets) in the previous example.

Starting from TM:

a) T∗M := (TM)∗ is called the cotangent bundle.

b) Bundles of multilinear forms with all the E1, . . . , Er, F copies of TM, T∗M or M × R

are called tensor bundles. Sections of such bundles are called tensor fields.

Example 3.6 (tautological bundle).
We have seen that

Gk(R
n) = {Orthogonal projections onto k-dim subspaces of Rn}

is an (n − k)k-dimensional submanifold of Sym(n). Now, we can define the tautological
bundle as follows:

E = {(P, v) ∈ Gk(R
n) | Pv = v}.

W is an open neighborhood of PV as described in the Grassmannian example. Then for
(PU, v) ∈ E define φ(PU, v) ∈ W × V ∼= W × Rk by φ(Pu, v) = (PU, PVv). Check that this
defines a local trivialization.

Exercise 3.7.
Let M ⊂ Rk be a smooth submanifold of dimension n. Let ι : M ↩→ Rk denote the inclusion
map. Show that the normal bundle NM = ⊔

p∈M
(TpM)⊥ ⊂ ι∗TRk ∼= M × Rk is a smooth

rank k − n vector bundle over M.

Definition 3.8 (pullback bundle). Given a smooth map f : M → M̃ and a vector bundle
E → M̃. Then the pullback bundle f ∗E is defined as the disjoint union of the fibers

( f ∗E)p = E f (p),

in other words
f ∗E = ⊔

p∈M
E f (p) ⊂ M × E.

Exercise 3.9.
The set f ∗E is a smooth submanifold of M × E.
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Definition 3.10 (Vector bundle isomorphism). Two vector bundles E → M, Ẽ → M are
called isomorphic if there exists a bundle isomorphism between E and Ẽ, i.e. a diffeomorphism

f : E → Ẽ,

such that π̃ ◦ f = π (fibers to fibers) and f |Ep
: Ep → Ẽp is a vector space isomorphism.

Fact: (without proof)
Every rank k vector bundle E over M is isomorphic to f ∗Ẽ, where Ẽ is the tautological
bundle over Gk(R

n) (some n) and some smooth f : M → Gk(R
n).

Definition 3.11 (trivial vector bundle). A vector bundle E → M of rank k is called trivial if
it is isomorphic to the trivial bundle M × Rk.

Remark 3.12. If E → M is a vector bundle of rank k then, by definition, each point p ∈ M
has an open neighborhood U such that the restricted bundle E|U := π−1(U) is trivial, i.e.
each bundle is locally trivial.

Definition 3.13 (Frame field). Let E → M be a rank k vector bundle, ϕ1, . . . , ϕk ∈ Γ(E).
Then (ϕ1, . . . , ϕk) is called a frame field if for each p ∈ M the vectors ϕ1(p), . . . , ϕk(p) ∈ Ep
form a basis.

Proposition 3.14. E is trivial if and only if E has a frame field.

Proof.

"⇒": E trivial ⇒ ∃F ∈ ΓHom(E, M × Rk) such that Fp : Ep → {p}× Rk is a vector space
isomorphism for each p. Then, for i = 1, . . . , k define ϕi ∈ Γ(E) by ϕp = F−1({p}× ei).

"⇐": (ϕ1, . . . , ϕk) frame field ! define F ∈ ΓHom(E, M × Rk) as the unique map such that
Fp(ϕi(p)) = {p}× ei for each p ∈ M. ! F is a bundle isomorphism.
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From the definition of a vector bundle: Each p ∈ M has a neighborhood U such that E|U
has a frame field.

Theorem 3.15. For each p ∈ M there is an open neighborhood U and ϕ1, . . . , ϕk ∈ Γ(E) such
that ϕ1|U , . . . , ϕk|U is a frame field of E|U.

Proof. There is an open neighborhood Ũ of p such that E|Ũ is trivial. Thus there is a frame
field ϕ̃1, . . . , ϕ̃k ∈ Γ(E|Ũ). There is a subset U ⊂ Ũ, a compact subset C with U ⊂ C ⊂ Ũ
and a smooth function f ∈ C ∞(M) such that f |U ≡ 1 and fM\C ≡ 0. Then, on Ũ, we define

ϕi(q) = f (q)ϕ̃i(q), i = 1, . . . , n,

and extend it by the 0-vector field to whole of M, i.e. ϕi(q) = 0 ∈ Eq for q ∈ M \ Ũ.

Example 3.16.
A rank 1 vector bundle E (a line bundle) is trivial ⇔ ∃ nowhere vanishing ϕ ∈ Γ(E)

Example 3.17. Let M ⊂ Rℓ submanifold of dimension n. Then a rank ℓ− n vector bundle
NM (the normal bundle of M) is given by

NpM = (NM) = (TpM)⊥ ⊂ TpRℓ = {p}× Rℓ.

Fact: The normal bundle of a Moebius band is not trivial.

Figure 3.1: A Moebius band made from a piece of paper.

Example 3.18. The tangent bundle of S2 is not trivial - a fact known as the hairy ball theorem:
Every vector field X ∈ Γ(T S2) has zeros.

Exercise 3.19.
Show that the tangent bundle TS3 of the round sphere S3 ⊂ R4 is trivial.
Hint: Show that the vector fields ϕ1(x1, x2, x3, x4) = (−x2, x1, x4,−x3), ϕ2(x1, x2, x3, x4) = (x3, x4,−x1,−x2)

and ϕ3(x1, x2, x3, x4) = (−x4, x3,−x2, x1) form a frame of TS3.
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3.1 Vector fields as operators on functions

Let X ∈ Γ(TM) and f ∈ C ∞(M), then X f : M → R, p 2→ Xp f , is smooth. So X can be
viewed as a linear map

X : C ∞(M) → C ∞(M), f 2→ X f .

Theorem 3.20 (Leibniz’s rule).
Let f , g ∈ C ∞(M), X ∈ Γ(TM), then

X( f g) = (X f )g + f (Xg).

Definition 3.21 (Lie algebra). A Lie algebra is a vector space g together with a skew bilinear
map

[., .] : g× g → g

which satisfies the Jacobi identity,

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Theorem 3.22 (Lie algebra of endomorphisms). Let V be a vector space. End(V) together
with the commutator

[., .] : End(V)× End(V) → End(V), [A, B] := AB − BA

forms a Lie algebra.

Proof. Certainly the commutaor is a skew bilinear map. Further,

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = A(BC − CB)− (BC − CB)A + B(CA − AC)
− (CA − AC)B + C(AB − BA)− (AB − BA)C,

which is zero since each term appears twice but with opposite sign.

Theorem 3.23. For all f , g ∈ C ∞(M), X, Y ∈ Γ(M), the following equality holds

[ f X, gY] = f g[X, Y] + f (Xg)Y − g(Y f )X

Lemma 3.24 (Schwarz lemma). Let ϕ = (x1, . . . , xn) be a coordinate chart, then
>

∂

∂xi
,

∂

∂xj

?
= 0

Exercise 3.25.
Prove Schwarz lemma above.
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Thus, if X = ∑
i

ai
∂

∂xi
and Y = ∑

j
bj

∂

∂xj
, we get

[X, Y] = ∑
i,j
[ai

∂

∂xi
, bj

∂

∂xj
] = ∑

i,j

3
ai

∂bj

∂xi

∂

∂xj
− bj

∂ai

∂xj

∂

∂xi

4
= ∑

i,j

3
aj

∂bi

∂xj
− bj

∂ai

∂xj

4 ∂

∂xi
.

Thus [X, Y] ∈ Γ(TM). In particular, we get the following theorem.

Theorem 3.26. The set of sections on the tangent bundle Γ(TM) ⊂ End(C ∞(M)) is a Lie
subalgebra.

Exercise 3.27.
Calculate the commutator [X, Y] of the following vector fields on R2 \ {0}:

X =
x@

x2 + y2

∂

∂x
+

y@
x2 + y2

∂

∂y
, Y = −y

∂

∂x
+ x

∂

∂y
.

Write X and Y in polar coordinates (r cos ϕ, r sin ϕ) 2→ (r, ϕ).

Definition 3.28 (Push forward).
Let f : M → N be a diffeomorphism and X ∈ Γ(TM). The push forward f∗X ∈ Γ(TN) of X is
defined by

f∗X := d f ◦ X ◦ f−1

Exercise 3.29.
Let f : M → N be a diffeomorphism, X, Y ∈ Γ(TM). Show: f∗[X, Y] = [ f∗X, f∗Y].

3.2 Connections on vector bundles

Up to now we basically did Differential Topology. Now Differential Geometry begins, i.e. we
study manifolds with additional ("geometric") structure.

Definition 3.30 (Connection). A connection on a vector bundle E → M is a bilinear map

∇ : Γ(TM)× Γ(E) → Γ(E)

such that for all f ∈ C ∞(M), X ∈ Γ(TM), ψ ∈ Γ(E),

(i) ∇ f Xψ = f∇Xψ

(ii) ∇X f ψ = (X f )ψ + f∇Xψ.

The proof of the following theorem will be postponed until we have established the exis-
tence of a so called partition of unity.

Theorem 3.31. On every vector bundle E there is a connection ∇.
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Definition 3.32 (Parallel section).
Let E → M be a vector bundle with connection ∇. Then ψ ∈ Γ(E) is called parallel if, for all
X ∈ TM,

∇Xψ = 0

Interlude:
Let ∇, ∇̃ be two connections on E.
Define

A : Γ(TM)× Γ(E) → Γ(E) by AXψ = ∇̃Xψ −∇Xψ

Then A satisfies
A f Xψ = ∇̃ f Xψ −∇ f Xψ = f AXψ

and
AX( f ψ) = · · · = f AXψ.

Suppose we have ω ∈ ΓHom(TM, End E). Then define B : Γ(TM)× Γ(E) → Γ(E) by

(BXψ)p = ωp(Xp)(ψp) ∈ Ep.

Then
B f Xψ = f BXψ, BX( f ψ) = f BXψ.

Theorem 3.33 (Characterization of tensors). Let E, F be vector bundles over M and
A : Γ(E) → Γ(F) linear such that for all f ∈ C ∞(M), ψ ∈ Γ(E) we have

A( f ψ) = f A(ψ).

Then there is ω ∈ ΓHom(E, F) such that (Aψ)p = ωp(ψp) for all ψ ∈ Γ(E), p ∈ M.

Proof. Let p ∈ M, ψ̃ ∈ Ep. We want to define ω by saying: Choose ψ ∈ Γ(E) such that
ψp = ψ̃. Then define ωp(ψ̃) = (Aψ)p.

Claim: (Aψ)p depends only on ψp, i.e. if ψ, ψ̂ ∈ Γ(E) with ψp = ψ̂p then (Aψ)p = (Aψ̂)p,
or in other words: ψ ∈ Γ(E) with ψp = 0 then (Aψ)p = 0.

Proof. choose a frame field (ψ1, . . . , ψk) on some neighborhood and a function f ∈
C ∞(M) such that f ψ1, . . . , f ψk are globally defined sections and f ≡ 1 near p. Let
ψ ∈ Γ(E) with ψp = 0. This leads to

ψ|U = a1ψ1 + · · ·+ akψk

with a1, . . . , ak ∈ C ∞(U). Then

f 2Aψ = A( f 2ψ)

= A(( f a1)( f ψ1) + · · ·+ ( f ak)( f ψk))

= ( f a1)A( f ψ1) + · · ·+ ( f ak)A( f ψk)).

Evaluation at p yields then (Aψ)p = 0.
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Remark 3.34. In the following we keep this identification be tensors and tensorial maps in
mind and just speak of tensors.

Thus the considerations above can be summarized by the following theorem.

Theorem 3.35. Any two connections ∇ and ∇̃ on a vector bundle E over M differ by a section
of Hom(TM, End E):

∇̃ −∇ ∈ ΓHom(TM, End E).

Exercise 3.36 (Induced connections).
Let Ei and F denote vector bundles with connections ∇i and ∇, respectively. Show that the
equation

(∇̂XT)(Y1, . . . , Yr) = ∇X(T(Y1, . . . , Yr))− ∑
i

T(Y1, . . . ,∇i
XYi, . . . , Yr)

for T ∈ Γ(E∗
1 ⊗ · · · ⊗ E∗

r ⊗ F) and vector fields Yi ∈ Γ(Ei) defines a connection ∇̂ on the
bundle of multilinear forms E∗

1 ⊗ · · ·⊗ E∗
r ⊗ F.

Remark 3.37. Note that, since an isomorphism ρ : E → Ẽ between vector bundles over M
maps for each p ∈ M the fiber of Ep linearly to the fiber Ẽp, the map ρ can be regarded as a
section ρ ∈ ΓHom(E, Ẽ). If moreover E is equipped with a connection ∇ and Ẽ is equipped
with a connection ∇̃ we can speak then of parallel isomorphisms: ρ is called parallel if
∇̂ρ = 0, where ∇̂ is the connection on Hom(E, Ẽ) induced by ∇ and ∇̃ (compare Example
3.36 above).

Definition 3.38 (Metric). Let E → M be a vector bundle and Sym(E) be the bundle whose
fiber at p ∈ M consists of all symmetric bilinear forms Ep × Ep → R. A metric on E is a
section 〈., .〉 of Sym(E) such that 〈., .〉p is a Euclidean inner product for all p ∈ M.

Definition 3.39 (Euclidean vector bundle). A vector bundle together with a metric (E, 〈., .〉)
is called Euclidean vector bundle.

Definition 3.40 (Metric connection). Let (E, 〈., .〉) be a Euclidean vector bundle over M.
Then a connection ∇ is called metric if for all ψ, ϕ ∈ Γ(E) and X ∈ Γ(TM) we have

X〈ψ, ϕ〉 = 〈∇Xψ, ϕ〉+ 〈ψ,∇X ϕ〉.

Exercise 3.41.
Let ∇ be a connection on a direct sum E = E1 ⊕ E2 of two vector bundles over M. Show
that

∇ =

.
∇1 A
Ã ∇2

/
,

where Ã ∈ Ω1(M, Hom(E1, E2)), A ∈ Ω1(M, Hom(E2, E1)) and ∇i are connections on the
bundles Ei.
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Recall:
A rank k vector bundle E → M is called trivial if it is isomorphic to the trivial bundle
M × Rk. We know that

E trivial ⇔ ∃ϕ1, . . . , ϕk ∈ Γ(E) : ϕ1(p), . . . , ϕk(p) linearly independent for all p ∈ M.

The trivial bundle comes with a trivial connection

∇trivial : Γ(M × Rk) ∋ ψ ↔ f = π2 ◦ ψ ∈ C ∞(M, Rk)

then
∇trivial

X ψ ↔ dX f = X f

for X ∈ Γ(TM). More precisely,

∇trivial
X ψ = (π(X), X f ).

This clarified in the following the trivial connection often will be denoted just by d.

Every vector bundle E is locally trivial, i.e. each point p ∈ M has an open neighborhood
U such that E|U is trivial.

Definition 3.42 (Isomorphism of vector bundles with connection). An isomorphism be-
tween vector bundles with connection (E,∇) and (Ẽ, ∇̃) is a vector bundle isomorphism
ρ : E → Ẽ, which is parallel, i.e. for all X ∈ Γ(TM), ψ ∈ Γ(E),

∇̃X(ρ ◦ ψ) = ρ ◦ (∇Xψ).

Two vector bundles with connection are called isomorphic if there exists an isomorphism between
them. A vector bundle with connection (E,∇) over M is called trivial if it is isomorphic to the
trivial bundle (M × Rk, d).

Remark 3.43. Note that ψ ∈ Γ(M × Rk) is parallel if π ◦ ψ is locally constant.

Theorem 3.44. A vector bundle E with connection is trivial if and only if there exists a parallel
frame field.

Proof.

"⇒": Let ρ : M × Rk → E be a bundle isomorhism such that ρ ◦ d = ∇ ◦ ρ. Then

φip := ρ(p, ei), i = 1, . . . , k,

form a parallel frame.

"⇐": If we have a parallel frame field ϕi ∈ Γ(E), then define

ρ : M × Rk → E, ρ(p, v) := ∑ vi ϕi(p).

It is easily checked that ρ is the desired isomorphism.
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Definition 3.45 (Flat vector bundle). A vector bundle E with connection is called flat if
it is locally trivial as a vector bundle with connection, i.e. each point p ∈ M has an open
neighborhood U such that E|U (endowed with the connection inherited from E) is trivial.
In other words: If there is a parallel frame field over U.



4. Differential Forms

4.1 Bundle-Valued Differential Forms

Definition 4.1 (Bundle-valued differential forms). Let E → M be a vector bundle. Then
for ℓ > 0 an E-valued ℓ-form ω is a section of the bundle Λℓ(M, E) whose fiber at p ∈ M is the
vector space of multilinear maps TpM × · · ·× TpM → Ep, which are alternating, i.e. for i ∕= j

ωp(X1, . . . , Xi, . . . , Xj, . . . , Xℓ) = −ωp(X1, . . . , Xj, . . . , Xi, . . . , Xℓ).

Further, define Λ0(M, E) := E. Consequently, Ω0(M, E) := Γ(E).

Remark 4.2. Each ω ∈ Ωℓ(M, E) defines a tensorial map Γ(TM)ℓ → Γ(E) and vice versa.

Definition 4.3 (Exterior derivative). Let E → M be a vector bundle with connection ∇. For
ℓ ≥ 0, define the exterior derivative

d∇ : Ωℓ(M, E) → Ωℓ+1(M, E)

for vectors X0, . . . , Xℓ ∈ Γ(TM) as follows:

d∇ω(X0, . . . , Xℓ) := ∑
i
(−1)i∇Xi(ω(X0, . . . , X̂i, . . . , Xℓ))

+ ∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xℓ)

Proof. Actually there are two things to be verified: d∇ω is tensorial and alternating.
First let us check it is tensorial:

d∇ω(X0, . . . , f Xk, . . . , Xℓ) = ∑
i<k

(−1)i∇Xi ω(X0, . . . , X̂i, . . . , f Xk, . . . , Xℓ)

+∇ f Xk
ω(X0, . . . , X̂k, . . . , Xℓ)

+ ∑
i>k

(−1)i∇Xi ω(X0, . . . , f Xk, . . . , X̂i, . . . , Xℓ)

+ ∑
i<j,i ∕=k,j ∕=k

(−1)i+jω([Xi, Xj], . . . , X̂i, . . . , f Xk, . . . , X̂j, . . . , Xℓ)

+ ∑
i<k

(−1)i+kω([Xi, f Xk], . . . , X̂i, . . . , X̂k, . . . , Xℓ)

+ ∑
k<i

(−1)k+iω([ f Xk, f Xi], . . . , X̂k, . . . , X̂i, . . . , Xℓ)

41
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= f d∇ω(X0, . . . , f Xk, . . . , Xℓ)

+ ∑
i ∕=k

(−1)i(Xi f )ω(X0, . . . , X̂i, . . . , Xℓ)

+ ∑
i<k

(−1)i+kω((Xi f )Xk, . . . , X̂i, . . . , X̂k, . . . , Xℓ)

− ∑
k<i

(−1)k+iω((Xi f )Xk, . . . , X̂k, . . . , X̂i, . . . , Xℓ)

= f d∇ω(X0, . . . , f Xk, . . . , Xℓ).

Next we want to see that d∇ω is alternating. Since d∇ω is tensorial we can test this on
commuting vector fields, i.e [Xi, Xj] = 0. With this we get for k < m that

d∇ω(X0, . . . , Xm, . . . , Xk, . . . , Xℓ) = ∑
i<k

(−1)i∇Xi ω(X0, . . . , X̂i, . . . , Xm, . . . , Xk, . . . , Xℓ)

+ (−1)k∇Xm ω(X0, . . . , X̂m, . . . , Xk, . . . , Xℓ)

+ ∑
k<i<m

(−1)i∇Xi ω(X0, . . . , Xm, . . . , X̂i, . . . , Xk, . . . , Xℓ)

+ (−1)m∇Xk ω(X0, . . . , Xm, . . . , X̂m, . . . , Xℓ)

+ ∑
i>k

(−1)i∇Xi ω(X0, . . . , Xm, . . . , Xk, . . . , X̂i, . . . , Xℓ)

= − ∑
i<k

(−1)i∇Xi ω(X0, . . . , X̂i, . . . , Xk, . . . , Xm, . . . , Xℓ)

+ (−1)k+(m−k−1)∇Xm ω(X0, . . . , Xk, . . . , X̂k, . . . , Xℓ)

− ∑
k<i<m

(−1)i∇Xi ω(X0, . . . , Xk, . . . , X̂i, . . . , Xm, . . . , Xℓ)

+ (−1)m+(m−k−1)∇Xk ω(X0, . . . , X̂k, . . . , Xm, . . . , Xℓ)

− ∑
i>k

(−1)i∇Xi ω(X0, . . . , Xk, . . . , Xm, . . . , X̂i, . . . , Xℓ)

= ∑
i<k

(−1)i∇Xi ω(X0, . . . , X̂i, . . . , Xℓ)

= −d∇ω(X0, . . . , Xk, . . . , Xm, . . . , Xℓ),

where the second equation follows by successively shifting the vector fields Xm resp. Xk to
the right resp. left.

1-forms:
Let E → M be a vector bundle with connection ∇, then Λ1(M, E) = Hom(TM, E). We
have Ω0(M, E) = Γ(E). We obtain a 1-form by applying d∇:

Ω0(M, E) ∋ ψ 2→ d∇ψ = ∇ψ ∈ Ω1(M, E).

As a special case we have E = M × R.
Then

Γ(M × R) ↔ C ∞(M)

and
Λ1(M, M × R) = Hom(TM, M × R) ↔ Hom(TM, R) = T∗M
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So in this case Ω1(M, M × R) ∼= Γ(T∗M) = Ω1(M) (ordinary 1-forms are basically
sections of T∗M). For M = U ⊂ Rn (open) we have the standard coordinates xi : U →
R (projection to the i-component) ! dxi ∈ Ω1(M).
Now let Xi := ∂

∂xi
∈ Γ(TU) which as Rn-valued functions is just the canonical basis

Xi = ei. Then X1, . . . , Xn is a frame and we have dxi(Xj) = δij, thus dx1, . . . , dxn is the
frame of T∗U dual to X1, . . . , Xn. So every 1-form is of the form:

ω = a1dx1 + · · ·+ andxn, a1, . . . , an ∈ C ∞(U).

If f ∈ C ∞(U), then Xi f = ∂ f
∂xi

. With a small computation we get

d f =
∂ f
∂x1

dx1 + · · ·+ ∂ f
∂xn

dxn.

ℓ-forms:
Let M ⊂ Rn be open and consider again E = M × R. Then for i1, . . . , iℓ define
dxi1 ∧ · · · ∧ dxiℓ ∈ Ωℓ(M) by

dxi1 ∧ · · · ∧ dxiℓ(X1, . . . , Xℓ) := det

(

)*
dxi1(X1) · · · dxi1(Xℓ)

... . . . ...
dxiℓ(X1) · · · dxiℓ(Xℓ)

+

,- .

Note: If iα = iβ for α ∕= β, then dxi1 ∧ · · · ∧ dxiℓ = 0. If σ : {1, . . . , ℓ} → {1, . . . , ℓ} is a
permutation, we have

dxiσ1
∧ · · · ∧ dxiσℓ

= sign σ dxi1 ∧ · · · ∧ dxiℓ .

Theorem 4.4. Let U ⊂ Rn be open. The ℓ-forms dxi1 ∧ · · · ∧ dxiℓ for 1 ≤ i1 < · · · < iℓ ≤ n
are a frame field for Λℓ(U), i.e. each ω ∈ Ωℓ(U) can be uniquely written as

ω = ∑
1≤i1<···<iℓ≤n

ai1···iℓ dxi1 ∧ · · · ∧ dxiℓ

with ai1···iℓ ∈ C ∞(U). In fact,

ai1···iℓ = ω
3 ∂

∂xi1
, . . . ,

∂

∂xiℓ

4
.

Proof. For uniqueness note that

dxi1 ∧ · · ·∧ dxiℓ
3 ∂

∂xj1
, . . . ,

∂

∂xjℓ

4
= det

(

)*
δi1 j1 · · · δi1 jℓ

... . . . ...
δiℓ j1 · · · δiℓ jℓ

+

,- =

9
1 if {i1, . . . , iℓ} = {j1, . . . , jℓ},
0 else.

Existence we leave as an exercise.

Theorem 4.5. Let U ⊂ Rn be open and ω = ∑
1≤i1<···<iℓ≤n

ai1···iℓ dxi1 ∧ · · · ∧ dxiℓ ∈ Ωℓ(U),

then

dω = ∑
1≤i1<···<iℓ≤n

n

∑
i=1

∂ai1···iℓ
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxiℓ .
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Proof. By Theorem 4.4 it is enough to show that for all 1 ≤ j0 < · · · < jℓ ≤ n

dω
3 ∂

∂xj0
, . . . ,

∂

∂xjℓ

4
= ∑

1≤i1<···<iℓ≤n

n

∑
i=1

∂ai1···iℓ
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxiℓ
3 ∂

∂xj0
, . . . ,

∂

∂xjℓ

4

=
ℓ

∑
k=0

∂aj0··· ĵk···jℓ
∂xjk

dxjk ∧ dxj0 · · · ∧ Adxjk · · · ∧ dxjℓ
3 ∂

∂xj0
, . . . ,

∂

∂xjℓ

4

=
ℓ

∑
k=0

(−1)k
∂aj0···!jk···jℓ

∂xjk
.

But we also get this sum if we apply the definition and use that [
∂

∂xk
,

∂

∂xm
] = 0.

Example 4.6. Let M = U ⊂ R3 be open. Then every σ ∈ Ω2(M) can be uniquely written as

σ = a1dx2 ∧ dx3 + a2dx3 ∧ dx1 + a3dx1 ∧ dx2.

Let σ = dω with ω = v1dx1 + v2dx2 + v3dx3. Then

dω
3 ∂

∂xi
,

∂

∂xj

4
=

∂

∂xi
ω
3 ∂

∂xj

4
− ∂

∂xj
ω
3 ∂

∂xi

4
=

∂vj

∂xi
− ∂vi

∂xj
.

Thus we get that a = curl(v).

The proofs of Theorem 4.4 and Theorem 4.5 directly carry over to bundle-valued forms.

Theorem 4.7. Let U ⊂ Rn be open and E → U be a vector bundle with connection ∇. Then
ω ∈ Ωℓ(U, E) can be uniquely written as

ω = ∑
1≤i1<···<iℓ≤n

ψi1···iℓ dxi1 ∧ · · · ∧ dxiℓ , ψi1···iℓ ∈ Γ(E).

Moreover,

d∇ω = ∑
1≤i1<···<iℓ≤n

n

∑
i=1

3
∇ ∂

∂xi
ψi1···iℓ

4
dxi ∧ dxi1 ∧ · · · ∧ dxiℓ .

Exercise 4.8.
Let M = R2. Let J ∈ Γ(EndTM) be the 90◦ rotation and det ∈ Ω2(M) denote the determi-
nant. Define ∗ : Ω1(M) → Ω1(M) by ∗ω(X) = −ω(JX). Show that

a) for all f ∈ C ∞(M), d ∗ d f = (∆ f )det, where ∆ f =
∂2

∂x2 f +
∂2

∂y2 f ,

b) ω ∈ Ω1(M) is closed (i.e. dω = 0), if and only if ω is exact (i.e. ω = d f ).

4.2 Wedge product

Let U, V, W be vector bundles over M. Let ω ∈ Ωk(M, U), η ∈ Ωℓ(M, V). We want to define

ω ∧ η ∈ Ωk+ℓ(M, W).

Therefore we need a multiplication ∗ : Up × Vp → Wp bilinear such that for ψ ∈ Γ(U), φ ∈
Γ(V) such that ψ ∗ φ : p 2→ ψp ∗p φp is smooth, i.e. ψ ∗ φ ∈ Γ(W). In short,

∗ ∈ Γ(U∗ ⊗ V∗ ⊗ W).
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Example 4.9.

a) Most standard case: U = M × R = V, ∗ ordinary multiplication in R.

b) Also useful: U = M×Rk×ℓ, V = M×Rℓ×m, W = M×Rk×m, ∗ matrix multiplication.

c) Another case: U = End(E), V = W = E, ∗ evaluation of endomorphisms on vectors,
i.e. (A ∗ ψ)p = Ap(ψp).

Definition 4.10 (Wedge product). Let U, V, W be vector bundles over M and ∗ ∈ Γ(U∗ ⊗
V∗ ⊗ W). For two forms ω ∈ Ωk(M, U) and η ∈ Ωℓ(M, V) the wedge product ω ∧ η ∈
Ωk+ℓ(M, W) is then defined as follows

ω ∧ η(X1, . . . , Xk+ℓ) :=
1

k!ℓ! ∑
σ∈Sk+ℓ

sgn σ ω(Xσ1 , . . . , Xσk) ∗ η(Xσk+1 , . . . , Xσk+ℓ
).

Example 4.11 (Wedge product of 1-forms). For ω, η ∈ Ω1(M) we have

ω ∧ η(X, Y) = ω(X)η(Y)− ω(Y)η(X).

Theorem 4.12. Let U, V, W be vector bundles over M, ∗ ∈ Γ(U∗ ⊗ V∗ ⊗ W), ∗̃ ∈ Γ(V∗ ⊗
U∗ ⊗ W) such that ψ ∗ φ = φ ∗̃ψ for all ψ ∈ Γ(U) and φ ∈ Γ(V), then for ω ∈ Ωk(M, U),
η ∈ Ωℓ(M, V) we have

ω ∧ η = (−1)kℓη ∧ ω.

Proof. The permutation ρ : {1, . . . , k + ℓ} → {1, . . . , k + ℓ} with (1, . . . , k, k + 1, . . . , k + ℓ) 2→
(k + 1, . . . , k + ℓ, 1, . . . , k) needs kℓ transpositions, i.e. sgn ρ = (−1)kℓ. Thus

ω ∧ η(X1, . . . , Xk+ℓ) =
1

k!ℓ! ∑
σ∈Sk+ℓ

sgn σ ω(Xσ1 , . . . , Xσk) ∗ η(Xσk+1 , . . . , Xσk+ℓ
)

=
1

k!ℓ! ∑
σ∈Sk+ℓ

sgn σ η(Xσk+1 , . . . , Xσk+ℓ
) ∗̃ω(Xσ1 , . . . , Xσk)

=
1

k!ℓ! ∑
σ∈Sk+ℓ

sgn (σ ◦ ρ) η(Xσρk+1
, . . . , Xσρk+ℓ

) ∗̃ω(Xσρ1
, . . . , Xσρk

)

=
(−1)kℓ

k!ℓ! ∑
σ∈Sk+ℓ

sgn σ η(Xσ1 , . . . , Xσk) ∗̃ω(Xσk+1 , . . . , Xσk+ℓ
)

= (−1)kℓ η ∧ ω(X1, . . . , Xk+ℓ).

Remark 4.13. In particular the above theorem holds for symmetric tensors ∗ ∈ Γ(U∗⊗U∗⊗
V).
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Theorem 4.14. Let E1, . . . , E6 be vector bundles over M. Suppose that ∗ ∈ Γ(E∗
1 ⊗ E∗

2 ⊗ E∗
4),

∗̃ ∈ Γ(E∗
4 ⊗ E∗

3 ⊗ E5), ∗̊ ∈ Γ(E1 ⊗ E6 ⊗ E5) and ∗̂ ∈ Γ(E∗
2 ⊗ E∗

3 ⊗ E6) be associative, i.e.

(ψ1 ∗ ψ2) ∗̃ψ3 = ψ1 ∗̊ (ψ2 ∗̂ψ3), for all ψ1 ∈ Γ(E1), ψ1 ∈ Γ(E2), ψ1 ∈ Γ(E3).

Then for ω1 ∈ Ωk1(M, E1), ω2 ∈ Ωk2(M, E2) and ω3 ∈ Ωk3(M, E3) we have

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3.

Proof. To simplify notation: E1 = · · · = E6 = M × R with ordinary multiplication of real
numbers. ω1 = α, ω2 = β, ω3 = γ, k1 = k, k2 = ℓ, k3 = m.

α ∧ (β ∧ γ)(X1, . . . , Xk+ℓ+m) =
1

k!(ℓ+ m)! ∑
σ∈Sk+ℓ+m

sgn σ α(Xσ1 , . . . , Xσk)

· 1
m! ∑

ρ∈Sℓ+m

sgn ρ β(Xσk+ρ1
, . . . , Xσk+ρℓ

)γ(Xσk+ρℓ+1
, . . . , Xσk+ρℓ+m

)

Observe: Fix σ1, . . . , σk. Then σk+1, . . . , σk+ℓ+m already account for all possible permutations
of the remaining indices. In effect we get the same term (ℓ+ m)! (number of elements in
Sℓ+m) many times. So:

α ∧ (β ∧ γ)(X1, . . . , Xk+ℓ+m) =
1

k!ℓ!m! ∑
σ∈Sk+ℓ+m

sgn σ α(Xσ1 , . . . , Xσk)

·β(Xσk+1 , . . . , Xσk+ℓ
)γ(Xσk+ℓ+1 , . . . , Xσk+ℓ+m).

Calculation of (α ∧ β) ∧ γ gives the same result.

Important special case:
On a chart neighborhood (U, ϕ) of M with ϕ = (x1, . . . , dxn) we have

dxi1 ∧ · · · ∧ dxik(Y1, . . . , Yk) = ∑
σ∈Sk

sgn σ dxi1(Yσ1) · · · dxik(Yσk) = det
7

dxij(Yk)
8

j,k
,

as was defined previously. In particular, for a bundle-valued form ω ∈ Ωℓ(M, E) we
obtain with Theorem 4.7 that

ω|U = ∑
1≤i1<···<iℓ≤n

ψi1···iℓ dxi1 ∧ · · · ∧ dxiℓ , ψi1···iℓ ∈ Γ(E|U),

and
(d∇ω)

000
U
= ∑

1≤i1<···<iℓ≤n
d∇ψi1···iℓ ∧ dxi1 ∧ · · · ∧ dxiℓ .

Theorem 4.15 (Product rule). Let E1, E2 and E3 be vector bundles over M with connections
∇1, ∇2 and ∇3, respectively. Let ∗ ∈ Γ(E∗

1 ⊗ E∗
2 ⊗ E3) be parallel, i.e. ∇3(ψ ∗ ϕ) = (∇1ψ) ∗

ϕ + ψ ∗ (∇2ϕ) for all ψ ∈ Γ(E1) and ϕ ∈ Γ(E2).. Then, if ω ∈ Ωk(M, E1) and η ∈ Ωℓ(M, E2),
we have

d∇
3
(ω ∧ η) = (d∇

1
ω) ∧ η + (−1)kω ∧ (d∇

2
η).
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Proof. It is enough to show this locally. For ω = ψ dxi1 ∧ · · · ∧ dxik , η = ϕ dxj1 ∧ · · · ∧ dxjℓ ,

d∇
3
(ω ∧ η) = d∇

3
(ψ ∗ ϕ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ)

= d∇
3
(ψ ∗ ϕ) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ

= ((d∇
1
ψ) ∗ ϕ + ψ ∗ d∇

2
ϕ) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ

= (d∇
1
ψ) ∗ ϕ ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ

+ ψ ∗ (d∇2
ϕ) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ

= d∇
1
ψ ∧ dxi1 ∧ · · · ∧ dxik ∧ ϕ dxj1 ∧ · · · ∧ dxjℓ

+ (−1)kψ ∧ dxi1 ∧ · · · ∧ dxik ∧ d∇
2
ϕ ∧ dxj1 ∧ · · · ∧ dxjℓ

= (d∇
1
ω) ∧ η + (−1)kω ∧ (d∇

2
η).

Since d∇ is R-linear and the wedge product is bilinear the claim follows.



5. Pullback

Motivation: A geodesic in M is a curve γ without acceleration, i.e. γ′′ = (γ′)′ = 0.

But what a map is γ′? What is the second prime?

We know that γ′(t) ∈ Tγ(t)M. Modify γ′ slightly by

%γ′(t) = (t, γ′(t)) meaning that %γ′ ∈ Γ(γ∗TM).

Right now γ∗TM is just a vector bundle over (−ε, ε). If we had a connection %∇ then
we can define

γ′′ = %∇ ∂
∂t

%γ′.

Definition 5.1 (Pullback of forms). Let f : M → M̃ be smooth and ω ∈ Ωk(M̃, E). Then
define

f ∗ω ∈ Ωk(M, f ∗E)

by
( f ∗ω)(X1, . . . , Xk) := (p, ω(d f (X1), . . . , d f (Xk)))

for all p ∈ M, X1, . . . , Xk ∈ TpM.
For ψ ∈ Ω0(M̃, E) we have f ∗ψ = (Id, ψ ◦ f ).

For ordinary k-forms ω ∈ Ωk(M̃) ∼= Ωk(M̃, M̃ × R):

( f ∗ω)(X1, . . . , Xk) = ω(d f (X1), . . . , d f (Xk)).

Let E → M̃ be a vector bundle with connection ∇̃, f : M → M̃.

48
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Theorem 5.2. There is a unique connection

∇ =: f ∗∇̃

on f ∗E such that for all ψ ∈ Γ(E), X ∈ TpM we have ∇X( f ∗ψ) =
3

p, ∇̃d f (X)ψ
4
.

In other words
∇( f ∗ψ) = ( f ∗∇̃)( f ∗ψ) = f ∗(∇̃ψ).

Proof. For uniqueness we choose a local frame field ϕ1, . . . , ϕk around f (p) defined on
V ⊂ N and an open neighborhood U ⊂ M of p such that f (U) ⊂ V.
Then for any ψ ∈ Γ( ( f ∗E)|U) there are g1, . . . , gk ∈ C ∞(U) such that ψ = ∑

j
gj f ∗ϕj. If a

connection ∇ on f ∗E has the desired property then, for X ∈ TpM,

∇Xψ = ∑
j

3
(Xgj) f ∗ϕj + gj∇X( f ∗ϕj)

4

= ∑
j

3
(Xgj) f ∗ϕj + gj(p, ∇̃d f (X)ϕj)

4

= ∑
j

3
(Xgj) f ∗ϕj + gj ∑

k
(p, ωjk(X)ϕk)

4

= (p, ∑
j

3
(Xgj)ϕj ◦ f + gj ∑

k
ωjk(X)ϕk ◦ f )

4
,

where
∇̃d f (X)ϕj = ∑

k
ωjk(X)ϕk ◦ f ,

with ωjk ∈ Ω1(U). For existence check that this formula defines a connection.

Theorem 5.3. Let ω ∈ Ωk(M, U), η ∈ Ωℓ(M, V) and ∗ ∈ Γ(U∗ ⊗ V∗ ⊗ W), then

f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.

Proof. Trivial.

Theorem 5.4. Let E be a vector bundle with connection ∇ over M̃, f : M → M̃, ω ∈ Ωk(M̃, E),
then

d f ∗∇( f ∗ω) = f ∗(d∇ω).

Proof. Without loss of generality we can assume that M̃ ⊂ Rn is open and that ω is of the
form

ω = ∑
1≤i1<···<ik≤n

ψi1···ik dxi1 ∧ · · · ∧ dxik .

Then

f ∗ω = ∑
1≤i1<···<ik≤n

( f ∗ψi1···ik) f ∗dxi1 ∧ · · · ∧ f ∗dxik ,

d∇ω = ∑
1≤i1<···<ik≤n

∇ψi1···ik ∧ dxi1 ∧ · · · ∧ dxik .
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Hence

f ∗d∇ω = ∑
1≤i1<···<ik≤n

f ∗(∇ψi1···ik) ∧ f ∗dxi1 ∧ · · · ∧ f ∗dxik

= ∑
1≤i1<···<ik≤n

( f ∗∇ f ∗ψi1···ik) ∧ dxi1 ◦ d f ∧ · · · ∧ dxik ◦ d f

= ∑
1≤i1<···<ik≤n

(d f ∗∇ f ∗ψi1···ik) ∧ d(xi1 ◦ f ) ∧ · · · ∧ d(xik ◦ f )

= d f ∗∇( f ∗ω).

Exercise 5.5.
Consider the polar coordinate map f : {(r, θ) ∈ R2 | r > 0} → R2 given by f (r, θ) :=
(r cos θ, r sin θ) = (x, y). Show that

f ∗(x dx + y dy) = r dr and f ∗(x dy − y dx) = r2 dθ.

Theorem 5.6 (Pullback metric). Let E → M̃ be a Euclidean vector bundle with bundle metric
g and f : M → M̃. Then on f ∗E there is a unique metric f ∗g such that

( f ∗g)( f ∗ψ, f ∗φ) = f ∗g(ψ, φ)

and f ∗g is parallel with respect to the pullback connection f ∗∇.

Exercise 5.7.
Prove Theorem 5.6.



6. Curvature

Consider the trivial bundle E = M × Rk, then

f ∈ C ∞(M, Rk) ↔ ψ ∈ Γ(E) by f ↔ ψ = (IdM, f )

On E we have the trivial connection ∇:

ψ = (IdM, f ) ∈ Γ(E), X ∈ Γ(TM).

This leads to the definition
∇Xψ := (IdM, X f ).

Claim: This ∇ satisfies for all X, Y ∈ Γ(TM), ψ ∈ Γ(E):

∇X∇Yψ −∇Y∇Xψ = ∇[X,Y]ψ.

Proof. The fact that ∇Yψ = (IdM, Y f ) and ∇X∇Yψ = (IdM, XY f ) yields

∇X∇Yψ −∇Y∇Xψ = (IdM, [X, Y] f ) = ∇[X,Y]ψ.

In the case that M ⊂ Rn open, X = ∂
∂xi

, Y = ∂
∂xj

this leads to [X, Y] = 0 and the above
formula says

∇ ∂
∂xi
∇ ∂

∂xj
ψ = ∇ ∂

∂xj
∇ ∂

∂xi
ψ.

The equation ∇X∇Yψ −∇Y∇Xψ −∇[X,Y]ψ = 0 reflects the fact that for the trivial connec-
tion partial derivatives commute.
Define a map

R̃∇ : Γ(TM)× Γ(TM)× Γ(E) → Γ(E)

by
(X, Y, ψ) 2→ R̃∇(X, Y)ψ := ∇X∇Yψ −∇Y∇Xψ −∇[X,Y]ψ.

Theorem 6.1. Let E be a vector bundle with connection ∇. Then for all X, Y ∈ Γ(TM) and
ψ ∈ Γ(E) we have

R̃∇(X, Y)ψ = d∇d∇ψ(X, Y).

Proof. In fact it is

d∇(d∇ψ)(X, Y) = ∇X(d∇ψ(Y))−∇Y(d∇ψ(X))− d∇ψ([X, Y])
= ∇X∇Yψ −∇Y∇Xψ −∇[X,Y]ψ.

51
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Theorem 6.2 (Curvature tensor). Let ∇ be a connection on a vector bundle E over M. The map
R̃∇ is tensorial in X, Y and ψ. The corresponding tensor R∇ ∈ Ω2(M, EndE) such that

[R̃∇(X, Y)ψ]p = R∇(Xp, Yp)ψp

is called the curvature tensor of ∇.

Proof. Tensoriality in X and Y follows from the last theorem. Remains to show that R̃∇ is
tensorial in ψ:

R̃∇(X, Y)( f ψ) = ∇X∇Y( f ψ)−∇Y∇X( f ψ)−∇[X,Y]( f ψ)

= ∇X((Y f )ψ + f∇Yψ)−∇Y((X f )ψ + f∇Xψ))ψ − (([X, Y] f )ψ + f∇[X,Y]ψ)

= X(Y f )ψ + (Y f )∇Xψ + (X f )∇Yψ + f∇X∇Yψ − Y(X f )ψ
− (X f )∇Yψ − (Y f )∇Yψ − f∇Y∇Xψ − ([X, Y] f )ψ − f∇[X,Y]ψ

= f R̃∇(X, Y)ψ.

Exercise 6.3.
Let E → M be a vector bundle with connection ∇, ψ ∈ Γ(E) and f : N → M. Then

( f ∗R∇)( f ∗ψ̃) = f ∗(R∇ψ) = R f ∗∇ f ∗ψ.

Lemma 6.4. Given X̂1, . . . , X̂k ∈ TpM, then there are vector fields X1, . . . , Xk ∈ Γ(TM) such
that

X1p = X̂1, . . . , Xkp = X̂k

and there is a neighborhood U ∋ p such that

[Xi, Xj]
00
U = 0.

Proof. We have already seen that we can extend coordinate frames to the whole manifold.
This yields n vector fields Yi such that [Yi, Yj] vanishes on a neighborhood of p. Since there
Yi form a frame. Then we can build linear combinations of Yi (constant coefficients) to
obtain the desired fields.

Theorem 6.5.
Let E → M be a vector bundle with connection ∇. For each ω ∈ Ωk(M, E)

d∇d∇ω = R∇∧ ω.

Proof. Let p ∈ M, X̂1, . . . , X̂k+2 ∈ TpM. Choose X1, . . . , Xk+2 ∈ Γ(TM) such that Xip = X̂i
and near p we have [Xi, Xj] = 0, i, j ∈ {1, . . . , k + 2}. The left side is tensorial, so we can
use X1, . . . , Xk+2 to evaluate d∇d∇ω(X̂1, . . . , X̂k+2). Then ij ∈ {1, . . . , k + 2}

d∇ω(Xi0 , . . . , Xik) =
k

∑
j=0

(−1)j∇Xij
ω(Xi0 , . . . , X̂ij , . . . , Xik).
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Then

d∇d∇ω(X1, . . . , Xk+2) = ∑
i<j

(−1)i+j∇Xi∇Xj ω(X1, . . . , X̂i, . . . , X̂j, . . . , Xk+2)

+ ∑
j<i

(−1)i+j+1∇Xi∇Xj ω(X1, . . . , X̂j, . . . , X̂i, . . . , Xk+2)

= ∑
i<j

(−1)i+j(∇Xi∇Xj −∇Xj∇Xi)ω(X1, . . . , X̂i, . . . , X̂j, . . . , Xk+2)

= ∑
i<j

(−1)i+jR∇(Xi, Xj)ω(X1, . . . , X̂i, . . . , X̂j, . . . , Xk+2).

On the other hand

R∇∧ ω(X1, . . . , Xk+2) =
1

2 · k! ∑
σ∈Sk+2

sgn σR∇(Xσ1 , Xσ2)ω(Xσ3 , . . . , Xσk+2).

For i, j ∈ {1, . . . , k + 2}, i ∕= j define

A{i,j} :=
&

σ ∈ Sk+2 | {σ1, σ2} = {i, j}
'

.

For i < j define σij ∈ Sk+2 by σ
ij
1 = i and σ

ij
2 = j, σ

ij
3 < · · · < σ

ij
k+2, i.e.

σij = (i, j, 3, . . . , î, . . . , ĵ, . . . , k + 2).

In particular we find that sgn σij = (−1)i+j. Further

A{i,j} = {σij ◦ ρ | ρ ∈ Sk+2, ρ1 = 1, ρ2 = 2}
: ;< =

=:A+
{i,j}

∪ {σij ◦ ρ | ρ ∈ Sk+2, ρ1 = 2, ρ2 = 1}
: ;< =

=:A−
{i,j}

.

Note, sgn(σij ◦ ρ) = (−1)i+j sgn ρ. With this we get

R∇∧ ω(X1, . . . , Xk+2) =
1

2 · k! ∑
i<j

∑
σ∈A{i,j}

sgn σR∇(Xσ1 , Xσ2)ω(Xσ3 , . . . , Xσk+2)

=
1

2 · k! ∑
i<j

(

)* ∑
σ∈A+

{i,j}

sgn σR∇(Xσ1 , Xσ2)ω(Xσ3 , . . . , Xσk+2)

+ ∑
σ∈A−

{i,j}

sgn σR∇(Xσ1 , Xσ2)ω(Xσ3 , . . . , Xσk+2)

+

,-

=
1

2 · k! ∑
i<j

5

∑
ρ∈Sk+2,ρ1=1,ρ2=2

(−1)i+j sgn ρR∇(Xi, Xj)ω(X
σ

ij
ρ3

, . . . , X
σ

ij
ρk+2

)

+ ∑
ρ∈Sk+2,ρ1=2,ρ2=1

(−1)i+jsgn ρR∇(Xj, Xi)ω(X
σ

ij
ρ3

, . . . , X
σ

ij
ρk+2

)

6

=
1

2 · k! ∑
i<j

5

∑
ρ∈Sk+2,ρ1=1,ρ2=2

(−1)i+j sgn ρR∇(Xi, Xj)sgn ρ ω(X
σ

ij
3

, . . . , X
σ

ij
k+2

)
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+ ∑
ρ∈Sk+2,ρ1=2,ρ2=1

(−1)i+jsgn ρR∇(Xj, Xi)(−sgn ρ)ω(X
σ

ij
ρ3

, . . . , X
σ

ij
ρk+2

)

6

= ∑
i<j

(−1)i+jR∇(Xi, Xj)ω(X1, . . . , X̂i, . . . , X̂j, . . . , Xk+2)

Lemma 6.6. Let E → M be a vector bundle, p ∈ M, ψ̃ ∈ Ep, A ∈ Hom(TpM, Ep). Then there
is ψ ∈ Γ(E) such that ψp = ψ̃ and ∇Xψ = A(X) for all X ∈ TpM.

Proof. Choose a frame field ϕ1, . . . , ϕk of E near p. Then we have near p

∇X ϕi =
k

∑
j=1

αij(X)ϕj, for αij ∈ Ω1(M),

A(X) =
k

∑
i=1

βi ϕip for β ∈ (TpM)∗,

ψ̂ =
k

∑
i=1

ai ϕip.

Ansatz: ψ = ∑
i

fi ϕi near p ! requirements on fi. Certainly fi(p) = ai. Further, for

X ∈ TpM,

∑ βi(X)ϕip = ∇Xψ = ∑
i

3
d fi(X)ϕip + fi(p)∑

j
αij(X)ϕjp

4
.

With fi(p) = ai,
βi = d fi + ∑

j
ajαji.

Such fi are easy to find.

Theorem 6.7 (Second Bianchi identity). Let E be a vector bundle with connection ∇. Then its
curvature tensor R∇ ∈ Ω2(M, End(E)) satisfies

d∇R∇ = 0.

Proof 1. By the last two lemmas we can just choose X0, X1, X2 ∈ Γ(TM) commuting near p
and ψ ∈ Γ(E) with ∇Xψ = 0 for all X ∈ TpM. Then near p

R∇(Xi, Xj)ψ = ∇Xi∇Xj ψ −∇Xj∇Xi ψ

and thus

[d∇R∇(X0, X1, X3)]ψ = (∇X0 R∇(X1, X2))ψ + (∇X1 R∇(X2, X0))ψ + (∇X2 R∇(X0, X1))ψ

= ∇X0∇X1∇X2ψ −∇X0∇X2∇X1ψ +∇X1∇X2∇X0ψ

−∇X1∇X0∇X2ψ +∇X2∇X0∇X1ψ −∇X2∇X1∇X0ψ

= R∇(X0, X1)∇X2ψ + R∇(X2, X0)∇X1ψ + R∇(X1, X2)∇X0ψ,

which vanishes at p.
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Proof 2. We have (d∇R∇)ψ = d∇(R∇ψ)− R∇ ∧ d∇ψ = d∇(d∇d∇ψ)− d∇d∇(d∇ψ) = 0.

Exercise 6.8.
Let M = R3. Determine which of the following forms are closed (dω = 0) and which are
exact (ω = dθ for some θ):
a) ω = yz dx + xz dy + xy dz,
b) ω = x dx + x2y2 dy + yz dz,
c) ω = 2xy2 dx ∧ dy + z dy ∧ dz.

If ω is exact, please write down the potential form θ explicitly.

Exercise 6.9.
Let M = Rn. For ξ ∈ Γ(TM), we define ωξ ∈ Ω1(M) and #ωξ ∈ Ωn−1(M) as follows:

ωξ(X1) := 〈ξ, X1〉, #ωξ(X2, . . . , Xn) := det(ξ, X2, . . . , Xn), X1, . . . , Xn ∈ Γ(TM).

Show the following identities:

d f = ωgrad f , d # ωξ = div(ξ)det,

and for n = 3,
dωξ = #ωrotξ .

6.1 Fundamental theorem for flat vector bundles

Let E → M be a vector bundle with connection ∇. Then

E trivial ⇐⇒ ∃ frame field Φ = (ϕ1, . . . , ϕk) with ∇ϕi = 0, i = 1, . . . , k

and

E flat ⇐⇒ E locally trivial, i.e. each point p ∈ M has a neighborhood U such that E|U is trivial.

Theorem 6.10 (Fundamental theorem for flat vector bundles). A vector bundle

(E,∇) is flat ⇐⇒ R∇ = 0.

Proof.

"⇒": Let (ϕ1, . . . , ϕk) be a local parallel frame field. Then we have for i = 1, . . . , k

R∇(X, Y)ϕi = ∇X∇Y ϕi −∇Y∇X ϕi −∇[X,Y]ϕi = 0.

Since R∇ is tensorial checking R∇ψ = 0 for the elements of a basis is enough.

"⇐": Assume that R∇ = 0. Locally we find for each p ∈ M a neighborhood U diffeomor-
phic to (−ε, ε)k and a frame field Φ = (ϕ1, . . . , ϕk) on U. Define ω ∈ Ω1(U, Rk×k)
by

∇ϕi =
k

∑
j=1

ϕjωji.
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With ∇Φ = (∇ϕ1, . . . ,∇ϕk), we write

∇Φ = Φω.

Similarly, for a map F : U → Gl(k, R) define a new frame field:

Φ̃ = ΦF−1

All frame fields on U come from such F. We want to choose F in such a way that
∇Φ̃ = 0. So,

0 !
= ∇Φ̃

= ∇(ΦF−1)

= (∇Φ)F−1 + Φd(F−1)

= (∇Φ)F−1 − ΦF−1dF F−1

= Φ(ω − F−1dF)F−1,

where we used that d(F−1) = −F−1dF F−1. Thus we have to solve

dF = Fω.

The Maurer-Cartan Lemma (below) states that such F : U → Gl(k, R) exists if and only
if the integrability condition (or Maurer-Cartan equation)

dω + ω ∧ ω = 0

is satisfied. We need to check that in our case the integrability condition holds: We
have

0 = R∇(X, Y)Φ = ∇X∇YΦ −∇Y∇XΦ −∇[X,Y]Φ

= ∇X(Φω(Y))−∇Y(Φω(X))− Φω([X, Y])
= Φω(X)ω(Y) + Φ(Xω(Y))− Φω(Y)ω(X)− Φ(Yω(X))− Φω([X, Y])
= Φ(dω + ω ∧ ω)(X, Y).

Thus dω + ω ∧ ω = 0.

Exercise 6.11.
Let M ⊂ R2 be open. On E = M × R2 we define two connections ∇ and ∇̃ as follows:

∇ = d +

.
0 −x dy

x dy 0

/
, ∇̃ = d +

.
0 −x dx

x dx 0

/
.

Show that (E,∇) is not trivial. Further construct an explicit isomorphism between (E, ∇̃)
and the trivial bundle (E, d).

Lemma 6.12 (Maurer-Cartan). Let

U := (−ε, ε)n, ω ∈ Ω1(U, Rk×k), F0 ∈ Gl(k, R),

then

∃F : U → Gl(k, R) : dF = Fω, F(0, . . . , 0) = F0 ⇐⇒ dω + ω ∧ ω = 0
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Remark 6.13. Note that dω + ω ∧ ω automatically vanishes on 1-dimensional domains.

Proof.

"⇒": Let F : U → Gl(k, R) solve the initial value problem dF = Fω, F(0, . . . , 0) = F0.
Then 0 = d2F = d(Fω) = dF ∧ ω + Fdω = Fω ∧ ω + Fdω = F(dω + ω ∧ ω). Thus
dω + ω ∧ ω = 0.

"⇐": (Induction on n) Let n = 1. We look for F : (−ε, ε) → Gl(k, R) with

dF = Fω, F(0, . . . , 0) = F0 ∈ Gl(k, R).

With ω = A dx, this becomes just the linear ODE

F′ = FA,

which is solvable. Only thing still to check that F(x) ∈ Gl(k, R) for initial value
F0 ∈ Gl(k, R).
But for a solution F we get

(det F)′ = (det F) trA.

Thus if (det F)(0) = det F0 ∕= 0 then det F(x) ∕= 0 for all x ∈ (−ε, ε).
Now let n > 1 and suppose that the Maurer-Cartan lemma holds for n − 1. Write

ω = A1 dx1 + · · ·+ Andxn

with Ai : (−ε, ε)n → Rk×k. Then

(dω + ω ∧ ω)( ∂
∂xi

, ∂
∂xj

) =
7
∑
α

dAα ∧ dxα + ∑
α,β

Aα Aβdxα ∧ dxβ

8
( ∂

∂xi
, ∂

∂xj
)

=
∂Aj
∂xi

− ∂Ai
∂xj

+ Ai Aj − Aj Ai.

By induction hypothesis there is

F̂ : (−ε, ε)n−1 → Gl(k, R)

with
∂F̂
∂xi

= F̂Ai

for i = 1, . . . , n − 1, and F̂(0) = F0. Now we solve for each (x1, . . . , xn−1) the initial
value problem

F̃′
x1,...,xn−1

(xn) = F̃x1,...,xn−1(xn)An(x1, . . . , xn),

F̃x1,...,xn−1(0) = F̂(x1, . . . , xn−1).

Define F(x1, . . . , xn) := F̃x1,...,xn−1(xn). By construction ∂F
∂xn

= FAn and with dω + ω ∧
ω = 0,

∂
∂xn

( ∂F
∂xi

− FAi) =
∂

∂xi
∂F
∂xn

− ∂
∂xn

(FAi) =
∂

∂xi
(FAn)− ∂

∂xn
(FAi)

= ∂F
∂xi

An − ∂F
∂xn

Ai + F( ∂An
∂xi

− ∂Ai
∂xn

)

= ∂F
∂xi

An − FAn Ai + F(An Ai − Ai An)

= F( ∂F
∂xi

− FAi)An.
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Thus
t 2→ ( ∂F

∂xi
− FAi)(x1, . . . , xn−1, t)

solves a linear ODE. Since ∂F
∂xi

− FAi = 0 on the slice {x ∈ (−ε, ε)n | xn = 0}, we

conclude ∂F
∂xα

− FAα for all α ∈ {1, . . . , n} on whole of (−ε, ε)n.

Exercise 6.14.
Let M ⊂ R be an interval and consider the vector bundle E = M × Rk, k ∈ N, equipped
with some connection ∇. Show that (E,∇) is trivial. Furthermore, show that any vector
bundle with connection over an intervall is trivial.



7. Riemannian Geometry

7.1 Affine connections

Definition 7.1. A connection ∇ on the tangent bundle TM is called an affine connection.

Special about the tangent bundle is that there exists a canonical 1-form ω ∈ Ω1(M, TM),
the tautological form, given by

ω(X) := X.

Definition 7.2 (Torsion tensor). If ∇ is an affine connection on M, the TM-valued 2-form

T∇ := d∇ω

is called the torsion tensor of ∇. The connection ∇ is called torsion-free if T∇ = 0 where ω is
the tautological 1-form.

Example 7.3. Let M ⊂ Rn open. Identify TM with M × Rn by setting (p, X) f = dp f (X).
On M × R use the trivial connection: All X ∈ Γ(M × R) are of the form X = (Id, X̂) for
X̂ ∈ C ∞(M, Rn).

(∇XY)p = (p, dpŶ(X)).

Remark (engineer notation):

∇XY = (X ·∇)Y

with ∇ = (
∂

∂x1
,

∂

∂x2
,

∂

∂x3
)t and X = (x1, x2, x3)

X ·∇ = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
.

Define a frame field X1, . . . , Xn on M of ’constant vector fields’ Xj = (p, ej). Then with ∇
denoting the trivial connection on TM = M × Rn we have

T∇(Xi, Xj) = ∇Xi Xj −∇Xj Xi − [Xi, Xj] = 0

Theorem 7.4 (First Bianchi identity). Let ∇ be a torsion-free affine connection on M. Then for
all X, Y, Z ∈ Γ(TM) we have

R∇(X, Y)Z + R∇(Y, Z)X + R∇(Z, X)Y = 0.

59
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Proof. For the tautological 1-form ω ∈ Ω1(M, TM) and a torsion-free connection we have

0 = d∇d∇ω(X, Y, Z) = R∇∧ ω(X, Y, Z) = R∇(X, Y)Z + R∇(Y, Z)X + R∇(Z, X)Y

Theorem 7.5. If ∇ is a metric connection on a Euclidean vector bundle E → M then we have
for all X, Y ∈ Γ(TM) and ψ, ϕ ∈ Γ(E)

〈R∇(X, Y)ψ, ϕ〉 = −〈ψ, R∇(X, Y)ϕ〉,

i.e. as a 2-form R∇ takes values in the skew-adjoint endomorphisms.

Proof. The proof is straightforward. We have

0 = d2〈ψ, ϕ〉
= d〈d∇ψ, ϕ〉+ d〈ψ, d∇ϕ〉
= 〈d∇d∇ψ, ϕ〉 − 〈d∇ψ ∧ d∇ϕ〉+ 〈d∇ψ ∧ d∇ϕ〉+ 〈ψ, d∇d∇ϕ〉
= 〈d∇d∇ψ, ϕ〉+ 〈ψ, d∇d∇ϕ〉.

With d∇d∇ = R∇ this yields the statement.

Definition 7.6 (Riemannian manifold). A Riemannian manifold is a manifold M together
with a Riemannian metric, i.e. a metric 〈., .〉 on TM.

Theorem 7.7 (Fundamental theorem of Riemannian geometry). On a Riemannian manifold
there is a unique affine connection ∇ which is both metric and torsion-free. ∇ is called the
Levi-Civita connection.

Proof. Uniqueness: Let ∇ be metric and torsion-free, X, Y, Z ∈ Γ(TM). Then

X〈Y, Z〉+ Y〈Z, X〉 − Z〈X, Y〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉+ 〈∇YZ, X〉
+ 〈Z,∇YX〉 − 〈∇ZX, Y〉 − 〈X,∇ZY〉

= 〈∇XY +∇YX, Z〉+ 〈Y,∇XZ −∇ZX〉+ 〈∇YZ −∇ZY, X〉
= 〈2∇XY − [X, Y], Z〉+ 〈Y, [X, Z]〉+ 〈[Y, Z], X〉.

Hence we obtain the so called Koszul formula:

〈∇XY, Z〉 = 1
2
3
X〈Y, Z〉+ Y〈Z, X〉 − Z〈X, Y〉+ 〈[X, Y], Z〉 − 〈Y, [X, Z]〉 − 〈[Y, Z], X〉

4
.

So ∇ is unique. Conversely define ∇XY by the Koszul formula (for this to make sense we
need to check tensoriality). Then check that this defines a metric torsion-free connection.

Exercise 7.8.
Let (M, g) be a Riemannian manifold and g̃ = e2ug for some smooth function u : M → R.
Show that between the corresponding Levi-Civita connections the following relation holds:

∇̃XY = ∇XY + du(X)Y + du(Y)X − g(X, Y)grad u.

Here grad u ∈ Γ(TM) is the vector field uniquely determined by the condition du(X) =
g(grad u, X) for all X ∈ Γ(TM).
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Definition 7.9 (Riemannian curvature tensor). Let M be a Riemannian manifold. The cur-
vature tensor R∇ of its Levi-Civita connection ∇ is called the Riemannian curvature tensor.

Exercise 7.10.
Let (M, 〈., .〉) be a 2-dimensional Riemannian manifold, R its curvature tensor. Show that
there is a function K ∈ C ∞(M) such that

R(X, Y)Z = K
3
〈Y, Z〉X − 〈X, Z〉Y

4
, for all X, Y, Z ∈ Γ(TM).

Exercise 7.11.
Let 〈., .〉 be the Euclidean metric on Rn and B := {x ∈ Rn | |x|2 < 1}. For k ∈ {−1, 0, 1}
define

gk|x :=
4

(1 + k|x|2)2 〈., .〉.

Show that for the curvature tensors Rk of the Riemannian manifolds (B, g−1), (Rn, g0) and
(Rn, g1) and for every X, Y ∈ Rn the following equation holds:

gk(Rk(X, Y)Y, X) = k
3

gk(X, X)gk(Y, Y)− gk(X, Y)24.

7.2 Flat Riemannian manifolds

The Maurer-Cartan-Lemma states that if E → M is a vector bundle with connection ∇ such
that R∇ = 0 then E is flat, i.e. each p ∈ M has a neighborhood U and a frame field

ϕ1, . . . , ϕk ∈ Γ(E|U)

with
∇ϕj = 0, j = 1, . . . , k.

In fact if we look at the proof we see that given a basis ψ1, . . . , ψk ∈ Ep the frame ϕ1, . . . , ϕk
can be chosen in such a way that ϕj(p) = ψj, j = 1, . . . , k.
Suppose E is Euclidean with compatible ∇ then choose ψ1, . . . , ψk to be an orthonormal
basis. Then for each X ∈ Γ(TU) we have

X〈ϕi, ϕj〉 = 0, i, j = 1, . . . , k,

i.e. (assuming that U is connected) ϕ1, . . . , ϕk is an orthonormal frame field:

〈ϕi, ϕj〉(q) = δij

for all q ∈ U. We summarize this in the following theorem.

Theorem 7.12. Every Euclidean vector bundle with flat connection locally admits an orthonormal
parallel frame field.

Intiution: n-dimensional Riemannian manifolds are "curved versions of Rn". Rn = "flat space".
The curvature tensor R∇ measures curvature, i.e. deviation from flatness.
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Definition 7.13 (Isometry). Let M and N be Riemannian manifolds. Then f : M → N is
called an isometry if for all p ∈ M the map

dp f : TpM → T f (p)N

is an isometry of Euclidean vector spaces.
In other words, f is a diffeomorphism such that for all p ∈ M, X, Y ∈ TpM we have

〈d f (X), d f (Y)〉N = 〈X, Y〉M.

The following theorem states that any Riemannian manifold with curvature R = 0 is locally
isometric to Rn.

Theorem 7.14. Let M be an n-dimensional Riemannian manifold with curvature tensor R = 0
and let p ∈ M. Then there is a neighborhood U ⊂ M of p, an open set V ⊂ Rn and an isometry
f : U → V.

Proof. Choose Ũ ⊂ M open, p ∈ Ũ then there is a parallel orthonormal frame field
X1, . . . , XN ∈ Γ(TŨ). Now define

E := TM ⊕ (M × R) = TM ⊕ R.

Any ψ ∈ Γ(E) is of the form
ψ =

3 Y
g
4

with Y ∈ Γ(TM) and g ∈ C ∞(M). Define a connection ∇̃ on E as follows

∇̃X
3 Y

g
4

:=
7

∇XY−gX
Xg

8
.

It is easy to see that ∇̃ is a connection. Now

R∇̃(X, Y)
3 Z

g
4
= ∇̃X

7
∇YZ−gY

Yg

8
− ∇̃Y

7
∇XZ−gX

Xg

8
−

7∇[X,Y]Z−g[X,Y]
[X,Y]g

8

=
7

∇X∇YZ−(Xg)Y−g∇XY−(Yg)X
XYg

8
−

7
∇Y∇XZ−(Yg)X−g∇YX−(Xg)Y

YXg

8
−

7∇[X,Y]Z−g[X,Y]
[X,Y]g

8

=
7

R(X,Y)Z
0

8
= 0.

Now choose Û ⊂ Ũ, p ∈ Û and ψ ∈ Γ(E|Û) with ψp = (0, 1), ∇̃ψ = 0.

Then ψ = (Y, g) with Y =
n

∑
j=1

f jXj and

3
0
0
4
=

7
∇XY−gX

Xg

8
=

7
∑j d f j(X)Xj−gX

Xg

8
.

In particular, g = 1. If we define f : Û → Rn by f = ( f1, . . . , fn) then

〈d f (X), d f (Z)〉 = ∑
j
〈d f j(X), d f j(Z)〉 = 〈gX, gY〉 = 〈X, Y〉.

In particular, dp f is bijective. The inverse function theorem then yields a neighborhood U
of p such that f |U : U → V ⊂ Rn is a diffeomorphism and hence an isometry.
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Exercise 7.15.
Let M and M̃ be Riemannian manifolds with Levi-Civita connections ∇ and ∇̃, respectively.
Let f : M → M̃ be an isometry and X, Y ∈ Γ(M). Show that f∗∇XY = ∇̃ f∗X f∗Y.

Remark 7.16. With the last exercise follows that a Riemannian manifold M has curvature
R = 0 if and only if it is locally isometric to Rn.

Exercise 7.17.
a) Show that 〈X, Y〉 := 1

2 trace(X̄tY) defines a Riemannian metric on SU(2).
b) Show that the left and the right multiplication by a constant g are isometries.
c) Show that SU(2) and the 3-sphere S3 ⊂ R4 (with induced metric) are isometric.

Hint: SU(2) = {
!

a b
−b̄ ā

"
| a, b ∈ C, |a|2 + |b|2 = 1}.



8. Geodesics

Let M be a Riemannian manifold, ∇ the Levi-Civita connection on TM, γ : [a, b] → M,
Y ∈ Γ(γ∗TM).
Then, for t ∈ [a, b] we have Yt ∈ (γ∗TM)t = {t}× Tγ(t)M ∼= Tγ(t)M. Y is called a vector field
along γ.
Now define

(Y′)t = (γ∗∇) ∂
∂s |t

Y =: dY
ds (t)

Definition 8.1 (Geodesic). γ : [a, b] → M is called a geodesic if γ′′ = 0.

Exercise 8.2.
Let f : M → M̃ and g : M̃ → M̂ be smooth. Show that f ∗(g∗TM̂) ∼= (g ◦ f )∗TM̂ and

(g ◦ f )∗∇̂ = f ∗(g∗∇̂)

for any affine connection ∇̂ on M̂. Show further that, if f is an isometry between Rieman-
nian manifolds, γ is curve in M and γ̃ = f ◦ γ, then

γ̃′′ = d f (γ′′).

Exercise 8.3.
Let M be a Riemannian manifold, γ : I → M be a curve which is parametrized with constant
speed, and f : M → M be an isometry which fixes γ, i.e. f ◦ γ = γ. Furthermore, let

ker(id − dγ(t) f ) = Rγ̇(t), for all t.

Then γ is a geodesic.

Definition 8.4 (Variation). A variation of γ : [a, b] → M is a smooth map

α : (−ε, ε)× [a, b] → M

such that γ0 = γ, where γt : [a, b] → M such that γt(s) = α(t, s). The vector field along γ
given by

Ys := d
dt

000
t=0

α(t, s)

is called the variational vector field of α.

64



CHAPTER 8. GEODESICS 65

Definition 8.5 (Length and energy of curves). Let γ : [a, b] → M be a smooth curve. Then

L(γ) :=
" b

a
|γ′| is called the length of γ,

E(γ) := 1
2

" b

a
|γ′|2 is called the energy of γ.

Theorem 8.6. Let γ : [a, b] → M be a smooth curve. Let ϕ : [c, d] → [a, b] be smooth with
ϕ′(t) > 0 for all t ∈ [c, d], ϕ(c) = a and ϕ(d) = b. Then

L(γ ◦ ϕ) = L(γ).

Proof. L(γ ◦ ϕ) =
" d

c
|(γ ◦ ϕ)′| =

" d

c
|(γ′ ◦ ϕ)|ϕ′ =

" ϕ(d)

ϕ(c)
|γ′| =

" b

a
|γ′| = L(γ).

Theorem 8.7. The following inequality holds (with equality if and only if |γ′| is constant)

E(γ) ≥ 1
2(b−a)L(γ)2

Proof. The Cauchy-Schwarz inequality yields

L(γ)2 ≤ 2E(γ)
" b

a
1 = 2(b − a)E(γ).

Theorem 8.8. Let γ : [a, b] → M be a smooth curve such that γ′(t) ∕= 0 for all t ∈ [a, b].
Then there is a smooth function ϕ : [0, L(γ)] → [a, b] with ϕ′(t) > 0 for all t, ϕ(0) = a and
ϕ(L(γ)) = b such that γ̃ = γ ◦ ϕ is arclength parametrized, i.e. |γ̃′| = 1.
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Proof. If ϕ′ = 1/|γ′ ◦ ϕ|, then |γ̃′| = |(γ′ ◦ ϕ)ϕ′| = 1. Define ψ : [a, b] → [0, L(γ)] by

ψ(t) =
" t

a
|γ′|. Then ψ′(t) > 0 for all t, ψ(a) = 0 and ψ(b) = L(γ). Now set ϕ = ψ−1. Then

ϕ′ = 1/|γ′ ◦ ϕ|.

Theorem 8.9. Let M̃ be a manifold with torsion-free connection ∇̃. Let f : M → M̃ and let
∇̃ = f ∗∇ be the pullback connection on f ∗TM̃. Then, if X, Y ∈ Γ(TM) we have

d f (X), d f (Y) ∈ Γ( f ∗TM)

and
∇̃Xd f (Y)− ∇̃Yd f (X) = d f ([X, Y])

Proof. Let ω denote the tautological 1-form on TM̃. Then

d∇̃ω = T∇̃ = 0 and f ∗ω = d f .

Thus

0 = f ∗d∇̃ω = d∇ f ∗ω = d∇d f .

Thus 0 = d∇d f (X, Y) = ∇Xd f (Y)−∇Yd f (X)− d f ([X, Y]).

Example 8.10. Let M ⊂ Rn be open, and consider the vector fields

X =
∂

∂xi
and Y =

∂

∂xj
.

Then

d f (X) =
∂ f
∂xi

, d f (Y) =
∂ f
∂xj

and we have >
∂

∂xi
,

∂

∂xj

?
= 0.

Hence

∇ ∂
∂xi

∂ f
∂xj

= ∇ ∂
∂xj

∂ f
∂xi

.

Theorem 8.11 (First variational formula for energy). Suppose α : (−ε, ε)× [a, b] → M is a
variation of γ : [a, b] → M with variational vector field Y ∈ Γ(γ∗TM). Then

d
dt

0000
t=0

E(γt) = 〈Y, γ′〉
00b
a −

" b

a
〈Y, γ′′〉.
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Proof.

d
dt

000
t=0

E(γt) =
d
dt

000
t=0

1
2

" b

a
|γ′

t|2

= 1
2

" b

a

d
dt

000
t=0

| ∂α
∂s |

2

=
" b

a

B
(α∗∇) ∂

∂t

∂α
∂s

000
(0,s)

, ∂α
∂s

C

=
" b

a

B
(α∗∇) ∂

∂s

∂α
∂t

000
(0,s)

, ∂α
∂s

C

=
" b

a

∂
∂s

000
(0,s)

D
∂α
∂t , ∂α

∂s

E
−

" b

a

B
∂α
∂t , (α∗∇) ∂

∂s

∂α
∂s

000
(0,s)

C

=
" b

a

d
ds
1
Y, γ′2−

" b

a

1
Y, γ′′2

=
1
Y, γ′200b

a −
" b

a

1
Y, γ′′2 .

Corollary 8.12. If α is a variation of γ with fixed endpoints, i.e. α(t, a) = γ(a) and α(t, b) =
γ(b) for all t ∈ (−ε, ε), and γ is a geodesic, then

d
dt

0000
t=0

E(γt) = 0

Later we will see the converse statement: If γ is a critical point of E, then γ is a geodesic.

Existence of geodesics:
Let ∇ be an affine connection on an open submanifold M ⊂ Rn and let

Xi := ∂
∂xi

.

Then there are functions Γk
ij, called Christoffel symbols of ∇, such that

∇Xi Xj = ∑
k

Γk
ijXk

Let γ = (γ1, . . . , γn) be a smooth curve in M, then

γ′ = ∑
i

γ′
i(γ

∗Xi).

By definition of γ∗∇,

(γ∗Xj)
′ = (γ∗∇) ∂

∂s
γ∗Xj = ∇γ′Xj = ∑

i
γ′

iγ
∗(∇Xi Xj) = ∑

i,k
γ′

i(Γ
k
ij ◦ γ)γ∗Xk.

Thus γ is a geodesic of ∇ if and only if

0 = γ′′ = ∑
j

3
γ′′

j γ∗Xj + γ′
j ∑

i,k
γ′

i(Γ
k
ij ◦ γ)γ∗Xk

4
.
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Since γ∗Xi form a frame field we get n equations:

0 = γ′′
k + ∑

i,j
γ′

iγ
′
jΓ

k
ij ◦ γ.

This is an ordinary differential equation of second order and Picard-Lindelöf assures
the existence of solutions.

Theorem 8.13 (First variational formula for length). Let γ : [0, L] → M be arclength
parametrized, i.e. |γ′| = 1. Let t → γt for t ∈ (−ε, ε) be a variation of γ with variational
vector field Y. Then

d
dt

0000
t=0

L(γt) = 〈Y, γ′〉
00L
0 −

" L

0
〈Y, γ′′〉

Proof. Almost the same as for the first variational formula for energy.

Theorem 8.14. Let γ : [a, b] → M be a geodesic. Then |γ′| = constant.

Proof. We have 〈γ′, γ′〉′ = 2〈γ′, γ′′〉 = 0.

Figure 8.1: A rotation is an isometry on the sphere S2.

Definition 8.15 (Killing fields). Suppose t → gt for t ∈ (−ε, ε) is a 1-parameter family of
isometries of M, i.e. each gt : M → M is an isometry. Then the vector field X ∈ Γ(TM),

Xp =
d
dt

0000
t=0

gt(p)

is called a Killing field of M.

Theorem 8.16. Let X ∈ Γ(TM) be a Killing field and γ : [a, b] → M be a geodesic, then

〈X, γ′〉 = constant.

Proof. Let γt := gt ◦ γ. Then Ys = Xγ(s) and L(γt) = L(γ) for all t. Thus

0 = d
dt

000
t=0

L(γt) = 〈Xγ, γ′〉
00b
a −

" b

a
〈Xγ, γ′′〉 = 〈Xγ, γ′〉

00b
a .

Thus 〈Xγ(a), γ′(a)〉 = 〈Xγ(b), γ′(b)〉.
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Example 8.17 (Surface of revolution and Clairaut’s relation).
If we have a surface of revolution in Euclidean 3-space, then the rotations about the axis
of revolution are isometries of the surface. This yields a Killing field X such that X is
orthogonal to the axis of revolution and |X| = r, where r denotes the distance to the axis.
From the last theorem we know that if γ is a geodesic parametrized with unit speed then
r cos α = 〈γ′, X〉 = c ∈ R. Thus r = c/ cos α and, in particular, r ≥ c Thus, depending on
the constant c, geodesics cannot pass arbitrarily thin parts.

Example 8.18 (Rigid body motion).
Let M = SO(3) ⊂ R3×3, q1, . . . , qn ∈ R3, m1, . . . , mn > 0. Now if t → A(t), t ∈ (−ε, ε),
B = A(0), X = A′(0). Then define

〈X, X〉 = 1
2

n

∑
i=1

mi|Xqi|2,

where Xqi =
d
dt

000
t=0

(A(t)qi). 〈X, X〉 is called the kinetic energy at time 0 of the rigid body

that undergoes the motion t → A(t). The principle of least action then says: When no
forces act on the body, it will move according to s → A(s) ∈ SO(3) which is a geodesic.
For all G ∈ SO(3) the left multiplication A 2→ GA is an isometry. Suitable families t 2→ Gt
with G0 = I then yields the conservation of angular momentum. We leave the details as
exercise.

Theorem 8.19 (Rope construction of spheres). Given p ∈ M and a smooth family, t ∈ [0, 1],
of geodesics

γt : [0, 1] → M such that γt(0) = p

for all t. Let X(t) ∈ TpM such that

X(t) = γ′
t(0), |X| = v ∈ R,

η : [0, 1] → M, η(t) = γt(1).

Then for all t we have
〈η′(t), γ′

t(1)〉 = 0.

Proof. Apply the first variational formula to γ = γt: Then we have Y0 = 0 and Y1 = η′.
Since

L(γt) =
" 1

0
|γ′| =

" 1

0
|X(0)| = v

we have

0 =
d
dt

0000
t=t0

L(γt) = 〈η′(t0), γ′
t0
(1)〉 − 〈0, γ′

t0
(0)〉 = 〈η′(t0), γ′

t0
(1)〉.
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8.1 The exponential map

Theorem 8.20. For each p ∈ M there is a neighborhood U ⊂ M and ε > 0 such that for all
X ∈ TqM, q ∈ U, with |X| < ε there is a geodesic γ : [0, 1] → M such that

γ(0) = q, γ′(0) = X.

Proof. Picard-Lindelöf yields a neighborhood W̃ ⊂ TM of 0 ∈ TpM and ε1 > 0 such that for
X ∈ W̃, X ∈ TqM, there is a geodesic γ : [−ε1, ε1] → M such that γ(0) = q and γ′(0) = X.
Choose U ⊂ M open, ε2 > 0 such that

W := {X ∈ TqM | q ∈ U, |X| ≤ ε2} ⊂ W̃

Now set ε = ε1ε2.
Let q ∈ U, X ∈ TqM with |X| < ε and define

Y := 1
ε1

X

Then |Y| < ε2, i.e. Y ∈ W ⊂ W̃. Thus there exists a geodesic γ̃ : [−ε1, ε1] → M with
γ̃′(0) = Y. Now define

γ : [0, 1] → M by γ(s) = γ̃(ε1s)

Then γ is a geodesic with γ′(0) = ε1γ̃′(0) = ε1Y = X.

Definition 8.21 (Exponential map). Let

Ω := {X ∈ TM | ∃ γ : [0, 1] → M geodesic with γ′(0) = X}

Define
exp : Ω → M by exp(X) = γ(1)

where γ : [0, 1] → M is the geodesic with γ′(0) = X.

Lemma 8.22. If γ : [0, 1] → M is a geodesic with γ′(0) = X then γ(t) = exp(tX) for all
t ∈ [0, 1].

Proof. For t ∈ [0, 1] define γt : [0, 1] → M by γt(s) = γ(ts). Then γ′
t(0) = tX , γt(1) = γ(t),

γt is a geodesic. So exp(tX) = γt(1) = γ(t).

Exercise 8.23.
Show that two isometries F1, F2 : M → M which agree at a point p and induce the same
linear mapping from TpM agree on a neighborhood of p.

Theorem 8.24. Let p ∈ M. Then there is ε > 0 and an open neighborhood U ⊂ M of p such
that

Bε := {X ∈ TpM | |X| < ε} ⊂ Ω and exp|Bε
: Bε → U

is a diffeomorphism.



CHAPTER 8. GEODESICS 71

Proof. From the last lemma we get d0p exp(X) = X. Here we used the canonical iden-
tification between TpM and T0p(TM) given by X 2→ (t 2→ tX). The claim then follows
immediately from the inverse function theorem.

Definition 8.25 (Geodesic normal coordinates).

(exp|Bε
)−1 : U → Bε ⊂ TpM ∼= Rn

viewed as a coordinate chart is called geodesic normal coordinates near p.

Exercise 8.26.
Let M be a Riemannian manifold of dimension n. Show that for each point p ∈ M there is
a local coordinate ϕ = (x1, . . . , xn) at p such that

g
3

∂
∂xi

, ∂
∂xj

)
000

p
= δij, ∇ ∂

∂xi

∂
∂xj

00000
p

= 0.

Theorem 8.27 (Gauss lemma). exp|Bε
maps radii t 2→ tX in Bε to geodesics in M. Moreover,

these geodesics intersect the hypersurfaces Sr := {exp(X) | X ∈ Bε, |X| = r} orthogonally.

Proof. This follows by the last lemma and the rope construction of spheres.

Definition 8.28 (Distance). Let M be a connected Riemannian manifold. Then for p, q ∈ M
define the distance d(p, q) by

d(p, q) = inf{L(γ) | γ : [0, 1] → M smooth with γ(0) = p, γ(1) = q}.

Exercise 8.29.
a) Is there a Riemannian manifold (M, g) which has finite diameter (i.e. there is an m such

that all points p, q ∈ M have distance d(p, q) < m) and there is a geodesic of infinite
length without self-intersections?

b) Find an example for a Riemannian manifold diffeomorphic to Rn but which has no
geodesic of infinite length.
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Definition 8.30 (Metric space). A metric space is a pair (X, d) where X is a set and

d : X × X → R

a map such that

a) d(p, q) ≥ 0, d(p, q) = 0 ⇔ p = q,

b) d(p, q) = d(q, p),

c) d(p, q) + d(q, r) ≥ d(p, r).

Is a Riemannian manifold (with its distance) a metric space?

Symmetry:
Symmetry is easy to see: If γ : [0, 1] → M is a curve from p to q, then γ̃(t) := γ(1 − t)
is a curve from q to p and L(γ̃) = L(γ).

Triangle inequality:
For the triangle inequality we need to concatenate curves. So let γ : [0, 1] → M be a
curve from p to q and γ̃ : [0, 1] → M be a curve from q to r.
Though the naive concatenation is not smooth we can stop for a moment and then
continue running:
Let ϕ : [0, 1] → [0, 1] be smooth monotone function such that ϕ(0) = 0, ϕ(1) = 1 and
ϕ′ vanishes on [0, ε) ∪ (1 − ε, 1] for some ε > 0 sufficiently small. Then define for γ
from p to q and γ̃ from q to r

γ̂(t) =
9

γ(ϕ(2t)), for t ∈ [0, 1/2)
γ̃(ϕ(2t − 1)), for t ∈ [1/2, 1]

Then
L(γ̂) = L(γ) + L(γ̃)

For every ε > 0 we find γ and γ̃ such that

L(γ) ≤ d(p, q) + ε, L(γ̃) ≤ d(q, r) + ε

Thus by concatenation we obtain a curve γ̂ from q to r such that

L(γ̂) ≤ d(p, q) + d(q, r) + 2ε

Thus
d(p, r) ≤ d(p, q) + d(q, r)

As certainly it holds that L(γ) ≥ 0 this leads to d(p, q) ≥ 0 and d(p, p) = 0.

So the only part still missing is that p = q whenever d(p, q) = 0.

Theorem 8.31. Let p ∈ M and f : Bε → U ⊂ M be geodesic normal coordinates at p. Then

d(p, exp(X)) = |X|, for |X| ≤ ε.

Moreover, for q ∕∈ U, d(p, q) > ε.
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Proof. Choose 0 < R < ε. Take γ : [0, 1] → M with γ(0) = p, and define

γ(t) := exp(tX) with |X| = R

Let
q := γ(1) = exp(X).

Then L(γ) = R and in particular d(p, q) ≤ R.

Now, choose 0 < r < R and let γ : [0, 1] → M be any curve with γ(0) = p and γ(1) = q.
Define a to be the greatest t ∈ [0, 1] such that there is Y such that

γ(a) = exp(Y), |Y| = r.

Define b to be the smallest t ∈ [0, 1], a < b, such that there is Z such that

γ(b) = exp(Z), |Z| = R.

Now find
ξ : [a, b] → TM

such that
r < |ξ(t)| < R for all t ∈ (a, b), |ξ(a)| = r, |ξ(b)| = R

and
exp(ξ(t)) = γ(t)

for all t ∈ [a, b]. Define
ρ : [a, b] → R by ρ := |ξ|

and
ν : [a, b] → Sn−1 ⊂ TpM by ξ =: ρν.

Claim: It holds that L(γ|[a,b]) ≥ R − r.

Proof. For all t ∈ [a, b] we have

γ′(t) = d exp
3
ξ ′(t)

4
= d exp

3
ρ′(t)ν(t) + ρ(t)ν′(t)

4
= ρ′(t)d exp(ν(t))+ ρ(t)d exp

3
ν′(t)

4

By the Gauss lemma we get then

|γ′(0)|2 = |ρ′(t)d exp(ν(t))|2 + |ρ(t)d exp
3
ν′(t)

4
|2 ≥ |ρ′(t)|2 |d exp(ν(t))|2

: ;< =
=1

= ρ′(t)2

Thus we have

L(γ|[a,b]) =
" b

a
|ρ′| ≥

" b

a
ρ′ = ρ|ba = R − r

Certainly, we can have equality only for ν′ = 0. This yields the second part.
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Now L(γ) ≥ R − r for all such r > 0. Hence L(γ) ≥ R and thus d(p, q) = R.

Corollary 8.32. A Riemannian manifold together with its distance function is a metric space.

Corollary 8.33. Let γ : [0, L] → M be an arclength-parametrized geodesic. Then there is ε > 0
such that

d(γ(0), γ(t)) = t for all t ∈ [0, ε]

The first variational formula says:
If γ : [a, b] → M is a smooth length-minimizing curve, i.e.

L(γ) = d(γ(a), γ(b)),

then γ is a geodesic.

To see this, choose a function ρ : [a, b] → R with ρ(s) > 0 for all s ∈ (a, b) but

ρ(a) = 0 = ρ(b).

Then there is ε > 0 such that

α : (−ε, ε)× (a, b) → M, α(t, s) = exp
3
tρ(s)γ′′(s)

4
.

Without loss of generality we can assume that |γ′| = 1, then

0 =
d
dt

0000
t=0

L(γ) = 〈γ′, ργ′′〉
00b
a: ;< =

=0

−
" b

a
〈ργ′′, γ′′〉 = −

" b

a
ρ|γ′′|2

for all such ρ. Thus we conclude γ′′ = 0 and so γ is a geodesic. We need a slightly stronger
result.
For preparation we give the following exercise:

Exercise 8.34.
d(p, q) = inf{L(γ) | γ : [a, b] → M piecesewise smooth, γ(a) = p, γ(b) = q}.

Theorem 8.35. Let γ : [0, L] → M be a continuous piecewise-smooth curve with |γ′| = 1
(whenever defined) such that L(γ) = d(γ(0), γ(L)). Then γ is a smooth geodesic.

Proof. Let 0 = s0 < . . . < sk = L be such that γ|[si−1,si]
is smooth, i = 1, . . . , k. The above

discussion then shows that the parts γ|[si−1,si]
are smooth geodesics. We need to show that

there are no kinks.
Let j ∈ {1, . . . , k − 1} and

X := γ′00
[sj−1,sj]

(sj), X̃ = γ′00
[sj,sj+1]

(sj)

Claim:
It holds that X = X̃.

Proof. Define Y = X̃ − X and choose any variation γt of γ which does nothing on
[0, sj−1] ∪ [sj+1, L]. Then

0 =
d
dt

0000
t=0

L(γt) = ∑
j

d
dt

0000
t=0

L(γt|[sj−1,sj]
) = 〈Y, X〉 − 〈Y, X̃〉 = |X̃ − X|2.

Thus X̃ − X = 0.
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8.2 Complete Riemannian manifolds

Definition 8.36 (Complete Riemannian manifold). A Riemannian manifold is called com-
plete if exp is defined on all of TM, or equivalently: every geodesic can be extended to R.

Theorem 8.37 (Hopf and Rinow). Let M be a complete Riemannian manifold, p, q ∈ M. Then
there is a geodesic γ : [0, L] with γ(0) = p, γ(L) = q and L(γ) = d(p, q).

Proof. Let ε > 0 be such that exp|Bε
is a diffeomorphism onto its image. Without loss of

generality, assume that δ < d(p, q).
Let 0 < δ < ε and set

S := exp(Sδ)

where Sδ = ∂Bδ. Then
f : S → R given by f (r) = d(r, q)

is continuous. Since S is compact, there is r0 ∈ S where f has a minimum, i.e.

d(r0, q) ≤ d(r, p) for all r ∈ S

Then r0 = γ(δ), where γ : R → M with γ(0) = p.
Define

d(S, q) := inf{d(r, q) | r ∈ S}
then

d(S, q) = d(r0, q)

Every curve η : [a, b] → M from p to q has to hit S: There is t0 ∈ [a, b] with η(t0) ∈ S.
Moreover,

L(η) = L(η|[a,t0]
) + L(η|[t0,b]) ≥ δ + d(S, q) = δ + d(r0, q)

so
d(p, q) ≥ δ + d(r, q)

On the other hand, the triangle inequality yields

d(p, q) ≤ d(p, r0) + d(r0, q) = δ + d(r0, q)

thus
d(γ(δ), q) = d(p, q)− δ
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Define statement A(t): "d(γ(t), q) = d(p, q)− t"
So we know A(δ) is true. We want to show that also A(d(p, q)) is true.
Define

t0 := sup{t ∈ [0, d(p, q)] | A(t) true}.

Assume that t0 < d(p, q).

Claim: A(t0) is true.

Proof. This is because there is a sequence t1, t2, . . . , with lim
n→∞

tn = t0 and A(tn) true,

i.e. f (tn) = 0 where f (t) = d(γ(t), q)− (d(p, q)− t). Clearly, f is continuous. Thus
f (t0) = 0, too.

Now let γ̃ be a geodesic constructed as before but emanating from γ(t0).
With the same argument as before we then get again

d(γ̃(δ̃), q) = d(γ̃(0), q)− δ̃.

Now, since A(t0) is true, we have

d(p, q) ≤ d(p, γ̃(δ̃)) + d(γ̃(δ̃), q) = d(p, γ̃(δ̃)) + d(γ̃(0), q)− δ̃ = d(p, γ̃(δ̃)) + d(p, q)− t0 − δ̃

There obviously is a piecewise-smooth curve from p to γ̃(δ̃) of length t0 + δ̃, so

d(p, γ̃(δ̃)) ≤ t0 + δ̃

hence
d(p, γ̃(δ̃)) = t0 + δ̃

henceforth this piecewise-smooth curve is length minimizing and in particular it is smooth,
i.e. there is no kink and thus we have γ̃(δ̃) = γ(t0 + δ̃).
Now we have

d(γ(t0 + δ̃), q) = d(γ(t0), q)− δ̃ = d(p, q)− (t0 + δ̃)

Thus A(t0 + δ̃) is true, which contradicts the definition of t0. So A(d(p, q)) is true.

Theorem 8.38. For a Riemannian manifold M the following statements are equivalent:

a) M is complete Riemannian manifold.

b) All bounded closed subsets of M are compact.

c) (M, d) is a complete metric space.

Proof.

a) ⇒ b): Let A ⊂ M be closed and bounded, i.e. there is p ∈ M and c ∈ R such that
d(p, q) ≤ c for a all p, q ∈ A. Look at the ball Bc ⊂ TpM. Hopf-Rinow implies then
that A ⊂ exp(Bc). Hence A is a closed subset of a compact set and thus compact
itself.

b) ⇒ c): This is a well-known fact: Any Cauchy sequence {pn}n∈N is bounded and thus
lies in bounded closed set which then is compact. Hence {pn}n∈N has a convergent
subsequence which then converges to the limit of {pn}n∈N.
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c) ⇒ a): Let γ : [0, ℓ] → M be a geodesic.

T := sup{t ≥ ℓ | γ can be extended to [0, T]}.

We want to show that T = ∞. Define pn := γ(T − 1
n ). Then {pn}n∈N defines a

Cauchy sequence which thus has a limit point p := lim
n→∞

pn. Thus γ extends to [0, T]

by setting γ(T) := p. Thus γ extends beyond T. which contradicts the definition of
T.

Exercise 8.39. A curve γ in a Riemannian manifold M is called divergent, if for every com-
pact set K ⊂ M there exists a t0 ∈ [0, a) such that γ (t) ∕∈ K for all t > t0. Show: M is
complete if and only if all divergent curves are of infinite length.

Exercise 8.40. Let M be a complete Riemannian manifold, which is not compact. Show that
there exists a geodesic γ : [0, ∞) → M which for every s > 0 is the shortest path between
γ (0) and γ (s).

Exercise 8.41. Let M be a compact Riemannian manifold. Show that M has finite diameter,
and that any two points p, q ∈ M can be joined by a geodesic of length d(p, q).



9. Topics on Riemannian Geometry

9.1 Sectional curvature

Definition 9.1 (Sectional curvature). Let M be a Riemannian manifold, p ∈ M, E ⊂ TpM,
dim E = 2, E = span{X, Y}. Then

KE :=
〈R(X, Y)Y, X〉

〈X, X〉〈Y, Y〉 − 〈X, Y〉2

is called the sectional the sectional curvature of E.

Exercise 9.2. Check that KE is well-defined.

Theorem 9.3. Let M be a Riemannian manifold, p ∈ M, and X, Y, Z, W ∈ TpM. Then

〈R(X, Y)Z, W〉 = 〈R(Z, W)X, Y〉.

Proof. The Jacobi identity yields the following 4 equations:

0 = 〈R(X, Y)Z, W〉+ 〈R(Y, Z)X, W〉+ 〈R(Z, X)Y, W〉,
0 = 〈R(Y, Z)W, X〉+ 〈R(Z, W)Y, X〉+ 〈R(W, Y)Z, X〉,
0 = 〈R(W, Z)X, Y〉+ 〈R(X, W)Z, Y〉+ 〈R(Z, X)W, Y〉,
0 = 〈R(X, W)Y, Z〉+ 〈R(Y, X)W, Z〉+ 〈R(W, Y)X, Z〉

The following theorem tells us that the sectional curvature completely determine the cur-
vature tensor R.

Theorem 9.4. Let V be a Euclidean vector space. R : V ×V → V bilinear with all the symmetries
of the curvature tensor of a Riemannian manifold. For any 2-dimensional subspace E ⊂ V with
orthonormal basis X, Y define

KE := 〈R(X, Y)Y, X〉
Let R̃ be another such tensor with K̃E = KE for all 2-dimensional subspaces E ⊂ V, then R̃ = R.

Proof. KE = K̃E implies

〈R(X, Y)Y, X〉 = 〈R̃(X, Y)Y, X〉 for all X, Y ∈ V

78
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We will show that we can calculate 〈R(X, Y)Z, W〉 for all X, Y, Z, W ∈ V provided we know
〈R(X, Y)Y, X〉 for all X, Y ∈ V.
Let X, Y, Z, W ∈ V and define f : R2 → R by

f (s, t) := 〈R(X + sW, Y + tZ)(Y + tZ), X + sW〉 − 〈R(X + sZ, Y + tW)(Y + tW), X + sZ〉

For fixed X, Y, Z, W this is polynomial in s and t.
We are only interested in the st term: It is

〈R(W, Z)Y, X〉+ 〈R(W, Y)Z, X〉+ 〈R(X, Z)Y, W〉+ 〈R(X, Y)Z, W〉
− 〈R(Z, W)Y, X〉 − 〈R(Z, Y)W, X〉 − 〈R(X, W)Y, Z〉 − 〈R(X, Y)Z, W〉

= 4〈R(X, Y)Z, W〉+ 2〈R(W, Y)Z, X〉 − 2〈R(Z, Y)W, X〉
= 4〈R(X, Y)Z, W〉+ 2〈R(W, Y)Z + R(Y, Z)W, X〉
= 4〈R(X, Y)Z, W〉 − 2〈R(Z, W)Y, X〉
= 6〈R(X, Y)Z, W〉.

Corollary 9.5. Let M be a Riemannian manifold and p ∈ M. Suppose that KE = K for all
E ⊂ TpM with dim E = 2, then

R(X, Y)Z = K(〈Z, Y〉X − 〈Z, X〉Y).

Proof. Define R̃ by this formula. Then R̃(X, Y) is skew in X, Y and

〈R̃(X, Y)Z, W〉 = K(〈Y, Z〉〈X, W〉 − 〈Z, X〉〈Y, W〉)

is skew in Z, W. Finally,

R̃(X, Y)Z + R̃(Y, Z)X + R̃(Z, X)Y
= K(〈Z, Y〉X − 〈Z, X〉Y + 〈X, Z〉Y − 〈X, Y〉Z + 〈Y, X〉Z − 〈Y, Z〉X) = 0.

and if X, Y ∈ TpM is an orthonormal basis then

K̃E = K〈〈Y, Y〉X − 〈Y, X〉Y, X〉 = K.

9.2 Jacobi fields

Let γ : [0, L] → M be a geodesic and

α : (−ε, ε)× [0, L] → M

be a geodesic variation of γ, i.e. γt = α(t, .) is a geodesic for all t ∈ (−ε, ε). Then the
corresponding variational vector field Y ∈ Γ(γ∗TM) along γ,

Ys =
∂α

∂t

0000
(0,s)

is called a Jacobi field.
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Lemma 9.6. Let α be a variation of a curve, ∇̃ = α∗∇ and R̃ = α∗R, then

∇̃ ∂
∂s
∇̃ ∂

∂s

∂
∂t α = R̃(

∂

∂s
,

∂

∂t
) ∂

∂s α + ∇̃ ∂
∂t
∇̃ ∂

∂s

∂
∂s α.

Proof. Since ∇ is torsion-free we have ∇̃ ∂
∂s

∂
∂t α = ∇̃ ∂

∂t

∂
∂s α. The equation then follows from

[ ∂
∂s , ∂

∂t ] = 0.

Theorem 9.7. A vector field Y ∈ Γ(γ∗TM) is a Jacobi field if and only if it satisfies

Y′′ + R(Y, γ′)γ′ = 0.

Proof.

"⇒": With the lemma above evaluated for (0, s) we obtain

Y′′ = R̃( ∂
∂s , ∂

∂t )
∂
∂s α

000
(0,s)

+ ∇̃ ∂
∂t
∇̃ ∂

∂s

∂
∂s α

000
(0,s)

= R̃(
∂

∂s
,

∂

∂t
) ∂

∂s α

0000
(0,s)

= R(γ′, Y)γ′

"⇐": Suppose a vector field Y along γ satisfies

Y′′ + R(Y, γ′)γ′ = 0

We want to construct a geodesic variation α such that γ0 = γ and with variational
vector field Y. The solution of a linear second order ordinary differential equation
Y is uniquely prescribed by Y(0) and Y′(0). In particular the Jacobi fields form a
2n-dimensional vector space. Denote p := γ(0).
By the first part of the prove it is enough to show that for each V, W ∈ TpM there exists
a geodesic variation α of γ with variational vector field Y which satisfies Y(0) = V
and Y′(0) = W:
The curve

η : (−ε̃, ε̃) → M, η(t) = exp(tV)

is defined for ε̃ > 0 small enough.

Define a parallel vector field W̃ along η with W̃0 = W. Similarly, let Ũ be parallel
along η such that Ũ0 = γ′(0).
Now define

α : [0, L]× (−ε, ε) → M by α(s, t) = exp
3
s(Ũt + tW̃t)

4

for ε > 0 small enough. Clearly, α is a geodesic variation of γ.
From Ũt, W̃t ∈ Tη(t)M we get

γt(0) = η(t)

and hence
Y(0) = η′(0) = V

Moreover,

Y′(0) = α̇′(0, 0) = ∇ ∂
∂t |(s,t)=(0,0)

α′ = ∇ ∂
∂t |t=0

(Ũt + tW̃t) = W̃0 = W
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Exercise 9.8.
Show that, as claimed in the previous proof, there is ε > 0 such that for |t| < ε the geodesic
γt = α(., t) really lives for time L.

Trivial geodesic variations: γt(s) = γ(a(t)s + b(t)) with functions a and b such that a(0) =
1, b(0) = 0. Then the variational vector field is just

Ys = (a′(0)s + b′(0))γ′(s)

Thus Y′ = a′(0)γ′ and hence Y′′ = 0. Certainly also R(Y, γ′) = 0, thus Y is a Jacobi field.
Interesting Jacobi fields are orthogonal to γ′:
Let Y be a Jacobi-field, then consider

f : [0, L] → R, f = 〈Y, γ′〉

Then

f ′ = 〈Y′, γ′〉 and f ′′ = 〈Y′′, γ′〉 = −〈R(Y, γ′)γ′, γ′〉 = 0

Thus there are a, b ∈ R such that

f (s) = as + b

In particular, with

V := Y(0) and W := Y′(0)

we have

f (0) = 〈V, γ′〉, f ′(0) = 〈W, γ′(0)〉

Then we will have f ≡ 0 provided that V, W ⊥ γ′(0). So 〈Y, γ′〉 ≡ 0 in this case. This
defines a (2n − 2)-dimensional space of (interesting) Jacobi fields.

Example 9.9. Consider M = Rn. Then Y Jacobi field along s 2→ p + sv if and only if Y′′ ≡ 0,
i.e. Y(s) = V + sW for parallel vector fields V, W along γ (constant).

Example 9.10. Consider the round sphere Sn ⊂ Rn+1 and let p, V, W ∈ Rn+1 be orthonor-
mal. Define γt as follows

γt(s) := cos s p + sin s (cos t V + sin t W).

Then Ys = sin s W is a Jacobi field and thus

− sin s W = Y′′(s) = −R(Y(s), γ′(0))γ′(0) = − sin sR(W, γ′)γ′.

Thus W = R(W, γ′)γ′. Evaluation for s = 0 then yields W = R(W, V)V. In particular, if
E = span{V, W} ⊂ TpSn, then KE = 〈R(W, V)V, W〉 = 1.
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9.3 Second variational formula

Theorem 9.11 (Second variational formula). Let

α : (−ε, ε)× (−ε, ε)× [0, L] → M

be a 2-parameter variation of a geodesic γ : [0, L] → M, i.e. α(0, 0, s) = γ(s), with fixed
endpoints, i.e. α(u, v, 0) = γ(0) and α(u, v, L) = γ(L) for all u, v ∈ (−ε, ε). Let

Xs =
∂α

∂u

0000
(0,0,s)

Ys =
∂α

∂v

0000
(0,0,s)

γu,v(s) := α(u, v, s)

Then
∂2

∂u∂v
E(γu,v)(0, 0) = −

" L

0
〈X, Y′′ + R(Y, γ′)γ′〉.

Remark 9.12. Actually, that is an astonishing formula. Since the left hand side is symmetric
in u and v, the right hand side must be symmetric in X and Y.
Let’s check this first directly:
Let X, Y ∈ Γ(γ∗TM) such that X0 = 0 = Y0 and XL = 0 = YL. Then with partial integration
we get

" L

0
〈X, Y′′ + R(Y, γ′)γ′〉 =

" L

0
〈X, Y′′〉+

" L

0
〈X, R(Y, γ′)γ′〉

= −
" L

0
〈X′, Y′〉+

" L

0
〈X, R(Y, γ′)γ′〉,

which is symmetric in X and Y.

Proof. First,

∂

∂u
E(γu.v) =

1
2

∂

∂u

" L

0
〈 ∂

∂s α, ∂
∂s α〉

=
" L

0
〈∇ ∂

∂u

∂
∂s α, ∂

∂s α〉

=
" L

0
〈∇ ∂

∂s

∂
∂u α, ∂

∂s α〉

= 〈 ∂
∂u α, ∂

∂s α〉
000

L

0
−

" L

0
〈 ∂

∂u α,∇ ∂
∂s

∂
∂s α〉

= −
" L

0
〈 ∂

∂u α,∇ ∂
∂s

∂
∂s α〉.
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Now, let us take the second derivative:

∂2

∂u∂v
E(γu.v)

= − ∂

∂v

" L

0
〈 ∂

∂u α,∇ ∂
∂s

∂
∂s α〉

= −
" L

0
〈∇ ∂

∂v

∂
∂u α,∇ ∂

∂s

∂
∂s α〉 −

" L

0
〈 ∂

∂u α,∇ ∂
∂v
∇ ∂

∂s

∂
∂s α〉

= −
" L

0
〈∇ ∂

∂v

∂
∂u α,∇ ∂

∂s

∂
∂s α〉 −

" L

0
〈 ∂

∂u α,∇ ∂
∂s
∇ ∂

∂s

∂
∂v α + R( ∂

∂v , ∂
∂s )

∂
∂s α〉.

Evaluation at (u, v) = (0, 0) yields

∂2

∂u∂v
E(γu,v)(0, 0) = −

" L

0
〈∇ ∂

∂v

∂
∂u α

0000
(u,v)=(0,0)

, γ′′〉 −
" L

0
〈X, Y′′ + R(Y, γ′)γ′〉.

With γ′′ = 0 we obtain the desired result.



10. Integration on manifolds

10.1 Orientability

Definition 10.1 (orientability).

1. An n-dimensional manifold M is called orientable if there exists ω ∈ Ωn(M) such that
ωp ∕= 0 for all p ∈ M.

2. An orientation on an n-dimensional manifold M is an equivalence class [ω] of nowhere
vanishing n-forms

ω ∼ ω̃ :⇔ ω̃ = λω

where λ : M → R is smooth and satisfies λ(p) > 0 for all p ∈ M.

3. Given an orentation [ω] on M, then we say a basis X1, . . . , Xn ∈ TpM is positively
orientated if ω(X1, . . . , Xn) > 0.

Remark 10.2.
If M is connected and orientable, then there are exactly two orientations of M. Therefore,
if M has k connected components and M is orientable, then M has 2k orientations.

Example 10.3. If dim M = 2 and f : M → R3 is an immersion and N : M → R3 is the unit
normal, then for X, Y ∈ TpM define

ω(X, Y) := det
3

Np, d f (X), d f (Y)
4

Therefore M is orientable.

Definition 10.4 (orientation of charts). If M oriented, i.e. M comes with an orientation [ω],
then a chart ϕ : U → Rn, ϕ = (x1, . . . , xn) is called positively oriented if

ω|U = f dx1 ∧ · · · ∧ dxn

with f : U → R, f (p) > 0 for all p ∈ U.

Definition 10.5 (atlas). An atlas of M is a collection of charts {Uα}α such that M =
!

α

Uα.

Theorem 10.6. If M is oriented, then M has an atlas only consiting of positively oriented charts.

84
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Proof. Let (Uα, ϕα)α∈I be an atlas of M, then without loss of generality we may assume that
all Uα are connected.
We see that by definition

ω|Uα = fα ϕ∗(dy1 ∧ · · · ∧ dyn)

with either fα(p) > 0 or fα(p) < 0 for all p ∈ Uα.
In the case of fα < 0 define ϕ̃α : U → R, ϕ̃α = (−x1, x2, . . . , xn) where ϕα = (x1, . . . , xn).
If we replace all negatively oriented ϕα by ϕ̃α, then these will do the trick.

Remark 10.7. The converse of theorem 10.6 is also ture, but to proof this we will need
thepartition of unity, so we will do it later on.

10.2 Integration of ω ∈ Ωn
0(M) with supp ω ⊂ U

Definition 10.8 (support of a section). If E is a vector bundle over M and ψ ∈ Γ(E), then
we define the support of ψ as

supp ψ := {p ∈ M|ψp ∕= 0}

Remark 10.9. The support is well defined as {p ∈ M|ψp ∕= 0}, as the complement of the
closed set {p ∈ M|ψp = 0}, is open.

Definition 10.10 (Ωn
0(R

n)). We define Ωn
0(R

n) := {ω ∈ Ωn(Rn)| supp ω is comapct}.

Definition 10.11 (Integral of ω ∈ Ωn
0(R

n)). If ω ∈ Ωn
0(R

n), then we define
"

Rn
ω :=

"

Rn
f

where we use the notation of definition 10.4.

Theorem 10.12. Given ω, ω̃ ∈ Ωn
0(R

n) and a diffeomorphism ϕ : supp ω̃ → supp ω such that
ω = ϕ∗ω̃ and det ϕ′ > 0, then "

Rn
ω =

"

Rn
ω̃

Proof. Let ω̃ = f̃ dx1 ∧ · · · ∧ dxn and ω = f dx1 ∧ · · · ∧ dxn with f = ω(X1, . . . , Xn) where
Xk(p) = (p, ek), k = 1, . . . , n. Then we see that

[(ϕ∗ω̃) (X1, . . . , Xn)]p = [ω̃(dϕ(X1), . . . , dϕ(Xn))]p

= f̃ ◦ ϕ(p)det
7

ϕ′
p(e1) · · · ϕ′

p(en)
8

= f̃ ◦ ϕ(p)det
7

ϕ′
p

8
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but also
[(ϕ∗ω̃) (X1, . . . , Xn)]p = [ω(X1, . . . , Xn)]p = f (p)

for all p ∈ Rn, i.e.
f = f̃ ◦ ϕ det

3
ϕ′4 = f̃ ◦ ϕ|det

3
ϕ′4|

where we used det(ϕ′) > 0 in the last equality. We finally yield, using the transormation of
coordinates theorem

"

Rn
ω̃ =

"

Rn
f̃ =

"

Rn
f̃ ◦ ϕ|det(ϕ′)| =

"

Rn
f =

"

Rn
ω

Definition 10.13 (Integral of ω ∈ Ωn
0(M) with supp ω ⊂ U). If M is oriented, ω ∈ Ωn

0(M)
and supp ω ⊂ U where U, ϕ)is an orientation preserving chart with V := ϕ(U), γ : V → M,
γ = ϕ−1, then we define "

M
ω :=

"

Rn
γ∗ω

Remark 10.14. The Integral is well defined, because assume (Ũ, ϕ̃) is another chart such
that γ̃ = ϕ̃−1 and the change of coordinates ψ, then γ̃∗ω = (γ ◦ψ)∗ω = ψ∗γ∗ω. By theorem
10.12 and since ψ is orientation preserving, we see that

"

Rn
γ∗ω =

"

Rn
γ̃∗ω

which makes the definition independent of the choice of (U, ϕ).

10.3 Partition of unity

Theorem 10.15 (partition of unity). Let M be a manifold, A ⊂ M compact and (Uα)α∈I an
open cover of A. Then there are 51, . . . , 5m ∈ C∞(M) such that for each i ∈ 1, . . . , m there is

αi ∈ I such that supp 5i ⊂ Uαi is compact. Moreover 5i(p) ≥ 0 for all p ∈ M and
m

∑
i=0

5i(p) = 1

for all p ∈ A.

Proof. We already know that there is a function g ∈ C∞(Rn) such that g(p) ≥ 0 for all
p ∈ Rn and g(p) > 0 if p ∈ D := {x ∈ Rn||x| < 1}. Define

Dp := {x ∈ Rn||x − p| < 1}, D̃ := {x ∈ Rn||x| < 2}, D̃p := {x ∈ Rn||x − p| < 2}.

For each p ∈ A there is a chart (Up, ϕp) such that ϕp : Up → D̃p is a diffeomorphism and
Up ⊂ Uα for some α ∈ I.
If we define

Vp := ϕ−1
p (Dp)

then (Vp)p∈A is an open cover of A. This implies that there are p1, . . . , pm ∈ A such that
A ⊂ Vp1 ∪ · · · ∪ Vpm .
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Now define for i ∈ {1, . . . , m} 5̃i : M → R by 5̃i =

#
0 if p /∈ Vpi

g ◦ ϕpi if p ∈ Vpi

This means (5̃1 + · · ·+ 5̃m)(p) ≥ 0 always holds, and in particular (5̃1 + · · ·+ 5̃m)(p) > 0
for p ∈ A. If now A = M, then we define

5i :=
5̃i

(5̃1 + · · ·+ 5̃m)

and we are done.
Otherwise, since A is compact, 5̃1 + · · · + 5̃m attains its minimum in A, i.e. there is an
ε > 0 such that (5̃1 + · · · + 5̃m)(p) ≥ ε for all p ∈ A. Consturct h ∈ C∞(M) such that
h(x) > 0 for all x ∈ R and h(x) = x for x ≥ ε. Now for i ∈ {1, . . . , m} define

5i :=
5̃i

h(5̃1 + · · ·+ 5̃m)

then clearly (5̃1 + · · ·+ 5̃m)|A = 1.

Theorem 10.16 (partition of unity - general version). Let M be a manifold and (Uα)α∈I an
open cover of M, i.e. ∪α∈IUα = M. Then there is a family (5β)β∈J with 5β ∈ C∞(M) such that

1. for each β ∈ J there is α ∈ I such that supp 5β ⊂ Uα is compact.

2. 5i(p) ≥ 0 for all p ∈ M.

3. 5β(p) ∕= 0 only for finitely many β ∈ J and and ∑
β∈J

5β(p) = 1 for all p ∈ M.

Proof. This theorem will remain without proof, as we only cite it to emphasize the existence
of a more general version, but do not actually use it much.

Nonetheless we will shortly give some applications of the general partition of unity.

Theorem 10.17. Every manifold has a Riemannian metric.

Proof. We have coordinate charts (Uα, ϕα), i.e. an open cover (Uα)α∈I of M and a Rieman-
nian metric gα on Uα, where gα = ϕ∗

αgRn is the pullback metric. Now we choose a partition
of unity (5β)β∈J subordinate to the cover (Uα)α∈I .
Define

g := ∑
β∈J

5βgα(β)

which is, as a linear combination of positive definite symmetric bilinear forms with positive
coefficients, also positive definite. Then g is a Riemannian metric on M.

Theorem 10.18. Every vector bundle E over M has a connection.

Remark 10.19. If ∇1, . . . ,∇m are connections on any bundle E and λ1, . . . , λm ∈ C∞(M)
with λ1 + · · ·+ λm = 1, then ∇ defined by

∇Xψ := λ1∇1
Xψ + · · ·+ λm∇m

Xψ

for X ∈ Γ(TM), ψ ∈ Γ(E), certainly is a connection.
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Proof. Locally (on Uα) E looks like Uα ×Rk, therefore, by pulling pack the trivial connection,
we have a connection ∇α on E|Uα . Choose a partition of unity (5β)β∈J subordinate to the
cover (Uα)α∈I , then we can say

∇ = ∑
β∈J

5β∇α(β)

is certainly a connection, as only finitely many of the 5 ∕= 0.

10.4 Manifolds with a boundary

Definition 10.20 (manifold with a boundary). A n-dimensional manifold is said to have a
boundary if its coodinate charts take values in H := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}.

Remark 10.21. If M is a manifold with boundary then

1. M◦ = M − ∂M is an n-dimensional manifold.

2. ∂M is an (n − 1)-dimensional manifold without boundary.

Definition 10.22 (positive oriented). Let p ∈ ∂M and X1, . . . , Xn−1 ∈ Tp∂M then we say
X1, . . . , Xn−1 are positive oriented if (N, X1, . . . , Xn−1) are positive oriented for some outward
pointing N ∈ Tp∂M.

Definition 10.23 (outward pointing). A vector N ∈ Tp∂M is called outward pointing if
dx1[(dϕ)(N)] > 0 for any coodinate chart ϕ.

10.5 Integration of ω ∈ Ωn
0(M)

We have already defined
"

M
ω for ω ∈ Ωn

0(M) if supp ω ⊂ U, where (U, ϕ) is a chart. The

main task now will be to get rid of the assumption that the support is contained in some
chart neighbourhood. The strategy will be to cover supp ω with Uα coming from charts
and then to choose a subordinate partition of unity (5β)βinJ . As supp ω is compact it is
sufficient to choose a finite set {U1, . . . , Um} to cover it and therefore we only need a finite
partition of unity 51, . . . , 5m.
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Definition 10.24 (Integral over ω ∈ Ωn
0(M)). Let ω ∈ Ωn

0(M), (Uα, ϕα)α∈I an open cover
of M consisting of coodrinate charts and 51, . . . , 5m a partition of unity subordinate to (Uα)α∈I
then we define

"

M
ω :=

m

∑
i=1

"

M
5iω

To ensure that our newly gained integral is well defined, we proof the following theorem.

Theorem 10.25.
"

M
ω thus defined is independet of the choices.

Proof. Without loss of generality we can assume (Uα)α∈I contains all coordinate neighbour-
hoods, i.e. the independence of (Uα)α∈I is no problem at all.
For the independence of the partition of unity let 51, . . . , 5m, 5̃1, . . . , 5̃m ∈ C∞(M) be two
partitions of unity, then

m

∑
i=1

"

M
5iω =

m

∑
i=1

"

M

5
m

∑
j=1

5̃j

6
5iω =

m

∑
i,j=1

"

M
5̃j5iω =

m

∑
j=1

"

M

5
m

∑
i=1

5i

6
5̃jω =

m

∑
j=1

"

M
5̃jω

Theorem 10.26 (Stoke’s theorem). Let M be an oriented manifold with boundary and ω ∈
Ωn−1

0 (M), then "

M
dω =

"

∂M
ω

Proof. As we habe the partition of unity as one of our tools, we may assume that without
loss of generality M = Hn = {x ∈ Rn|x1 ≤ 0}. For further simplification we also only
consider the case n = 2 as the calculations work in the same manner for higher dimensions.
We can write

ω = adx + bdy

then

dω =

.
∂b
∂x

− ∂a
∂y

/
dx ∧ dy

By the definition of the integration of forms in Rn and Fubini’s theorem we now see that

"

H2
dω =

" ∞

−∞

" 0

−∞

∂b
∂x

dxdy −
" 0

−∞

" ∞

−∞

∂a
∂y

dydx

=
" ∞

−∞
b(0, y) dy − 0

=
"

∂H2
b dy

=
"

∂H2
ω

where we used the compact support of ω and the fact that the y-axis suits the induced
orientation of ∂H2.
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0 (M)

For now consider an oriented Riemannian manifold M, p ∈ M, an orthonormal basis
X1, . . . , Xn of TpM and ω ∈ Ω0(M) that is compatible with the orientation and ω(X1, . . . , Xn) =
1.
Then any other positive oriented basis Y1, . . . , Yn of TpM is given by

Yj =
n

∑
i=1

aijXi

with A = (aij) ∈ SO(n), i.e. AT A = I, det A = 1. Also we can immediately see that
ω(Y1, . . . , Yn) = 1.

Theorem 10.27. On an oriented Riemannian manifold, there is a unique ωM ∈ Ωn(M) such
that

ωM(X1, . . . , Xn) = 1

on each positive oriented orthonormal basis X1, . . . , Xn ∈ TpM.

Definition 10.28. (volume form) The unique n-form ωM as defined in theorem 10.27 is called
the volume form of M.

Definition 10.29. (Integral of f ∈ C∞
0 (M)) Let M be an oriented Riemannian manifold and

f ∈ C∞
0 (M), then we define "

M
f :=

"

M
f · ωM



11. Remarkable Theorems

11.1 Theorem of Gauß-Bonnet

We already know that for a compact Riemannian manifold M, and f ∈ C ∞(M) one can
define "

M
f ∈ R

If M is any orientable manifold of dimension n and ω ∈ Ωn
0(M) then one can define

"

M
ω

In this chapter we will derive that there is an interesting relation between Topology and
Geometry.

Theorem 11.1. (Gauß-Bonnet) Let M be a compact and oriented Riemannian manifold with
dim M = 2. Then there is an integer g ∈ 0, 1, 2, . . . such that

"

M
K = 4π(1 − g)

Proof. We will later proof a more general version, the ”Poincaré-Hopf Index”-theorem.

Definition 11.2. (genus) The integer g mentioned in theorem 11.1 is called the genus of M.

Figure 11.1: A sphere and a Torus that are of genus 0 and 1 respectively.

Remark 11.3. The genus of M does neither depend on the metric, nor on the orientation.

By considering some simple examples one can easily see that the Gauß-Bonnet theorem
provides a remarkable link between a local property, namely the curvature, and a topolog-
ical, thus global property of M. In general one could say ”g is the number of holes in M”.
Another rather interesting theorem, although it is not so easy to proof (thus we won’t do
it) is the following

91
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Theorem 11.4. If M, M̃ are compact oriented surfaces with genus g, g̃ respectively, then M is
diffeomorphic to M̃ if and only if g = g̃

So by listing the genus of a surface, we obtain complete list of diffeomorphism types of
compact oriented surfaces.
One may know the follwing theorem from lectures about complex analysis which enables
us to classify also the curvature of a surface by in dependence of its genus.

Theorem 11.5. (uniformization theorem) Let M be a compact Riemannian surface, then there is
u ∈ C∞(M) such that regarding

〈·, ·〉∼ = e2u 〈·, ·〉
M has constant curvature K = {−1, 0, 1} (depending on whether g = 0, g = 1, g ≥ 2). For
g ≥ 2 u is unique.

Proof. This theorem is known from lectures about complex analysis.

Theorem 11.6. (Ricci-flow) On a compact surface the Ricci-flow

〈·, ·〉• = −Ric +
"

M
K 〈·, ·〉

converges to a conformally equivalent metric with constant curvature.

Definition 11.7. (isometric immersion) Consider a Riemannian manifold M with 〈·, ·〉 and
f : M → R3 then f is an isometric immersion if

〈d f (X), d f (Y)〉R3 = 〈X, Y〉M

Theorem 11.8. If M is compact and f : M → R3 is an isometric immersion then there is p ∈ M
with K(p) > 0.

Remark 11.9. This explains why we have to use the various models, that are well known
from lectures about geometry, to visualize the hyperbolic plane . We cannot find an isomet-
ric immersion to R3 as this would be in contradiction to the constant negative curvature of
hyperbolic space.

11.2 Bonnet-Myers’s Theorem

Definition 11.10 (Simply connected). A manifold M is called simply connected if for every
smooth map γ : S1 → M, S1 = ∂D2, there is a smooth map f : D2 → M such that γ = f |S1 .

Theorem 11.11. Let M be a simply connected complete Riemannian manifold with constant
sectional curvature K > 0. Then M is isometric to a round sphere of radius r = 1/

√
K.
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Figure 11.2: A sphere is simply connected and a Torus is not.

Proof. Without proof.

Without completeness:
Then it is only a part of the sphere.

Without simply connected:
RPn has also constant sectional curvature. Similar with lense spaces: Identify points
on S3 ⊂ C2 that differ by e2πi/n, M = S3/ ∼.

Theorem 11.12. Let M be a simply connected, complete manifold, and let for all sectional curva-
tures KE the inequality 1

4 < KE ≤ 1 hold, then M is homeomorphic to Sn.

Proof. As we want to save some time we will skip this quite complicated proof.

Remark 11.13. For M = CPn one has 1
4 ≤ KE ≤ 1.

Definition 11.14 (Scalar curvature). Let M Riemannian manifold, p ∈ M, G2(TpM) Grass-
manian of 2-planes E ⊂ TpM ( ! dim G2(TpM) = n(n − 1)/2), then

S̃ := 1
vol(G2(TpM))

"

G2(TpM)
KE

is called the scalar curvature.

Definition 11.15 (Ricci curvature). Let M be a Riemannian manifold, p ∈ M and X ∈ TpM
woth |X| = 1.
Let further Sn−2 ⊂ X⊥ ⊂ TpM, then

FRic(X, X) = 1
vol(Sn−2)

"

Sn−2
Kspan{X,Y}dY

is called Ricci curvature.

Let us try something simpler:
Ricci-tensor: Choose an orthonormal basis Z1, . . . , Zn of TpM with Z1 = X and define

Ric(X, X) := 1
n−1

n

∑
i=1

〈R(Zi, X)X, Zi〉 = 1
n−1

n

∑
i=2

Kspan{X,Zi}.

Then with AZ := R(Z, X)X defines an endomorphism of TpM and

Ric(X, X) := 1
n−1

n

∑
i=1

〈R(Zi, X)X, Zi〉 = 1
n−1

n

∑
i=1

〈AZi, Zi〉 = 1
n−1 tr(A).

Thus Ric(X, X) does not depend on the choice of the basis.
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Definition 11.16 (Ricci-tensor). The bilinear map

Ricp : TpM × TpM → R, (X, Y) 2→ Ric(X, Y)p := 1
n−1 tr(Z 2→ R(Z, X)Y)

is called the Ricci-tensor of M at p.

Theorem 11.17. Ricp : TpM × TpM → R is symmetric.

Proof.

Ric(X, Y) = 1
n−1

n

∑
i=1

〈R(Zi, X)Y, Zi〉 = 1
n−1

n

∑
i=1

〈R(Zi, Y)X, Zi〉 = Ric(Y, X).

Now we have two symmetric bilinear forms on each tangent space, namely 〈., .〉 and Ric.

Theorem 11.18. The Ricci-tensor is well defined in the sense that it yields the Ricci-curvature,
i.e.

FRic(X, X) = Ric(X, X)

Proof. Without proof.

Definition 11.19 (ricp-map). Define

ricp : TpM → TpM by 〈ricpX, Y〉 := Ric(X, Y)

Remark 11.20. ricp is self-adjoint.

! Then the Eigenvalues κ1, . . . , κn of ricp (and eigenvectors) provide useful information
which leads us to the following definition.

Definition 11.21 (Scalar curvature). Let Z1, . . . , Zn be an orthonormal basis of TpM. Then
define

S(p) := 2
n(n−1) ∑

i<j
〈R(Zi, Zj)Zj, Zi〉

Remark 11.22. If we choose an ONB, then we can derive that

1
n

n

∑
j=1

Ric(Zj, Zj) =
1
n

n

∑
j=1

1
n−1 ∑

i ∕=j
〈R(Zi, Zj)Zj, Zi〉

= 1
n(n−1)

n

∑
j=1

∑
i ∕=j

〈R(Zi, Zj)Zj, Zi〉

= 2
n(n−1) ∑

i<j
〈R(Zi, Zj)Zj, Zi〉

= 1
n

n

∑
j=1

〈ricpZj, Zj〉

= 1
n tr(ricp)

In other words, 1
n tr(ricp) would also be a suitable definition for the scalar curvature.
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Theorem 11.23. The scalar curvature is well defined, i.e. S̃(p) = S(p).

Proof. Without proof.

If we now restrict ourselves to the case dim M = 2, then we can consider K ∈ C∞(M),
the sectional curvature of M. For |X| = 1, then Ric(X, X) is the average of all sectional
curvatures of planes E ⊂ TpM with X ⊂ E. As dim M = 2, it is Ric(X, X) = K for all
|X| = 1, or even more general

Ric(X, X) = K 〈X, X〉
for all X ∈ TpM. So we can consider Ric = K 〈·, ·〉 as a map

Ric : TpM × TpM → R, X 2→ K 〈X, X〉

This map turns a Riemannian manifold into an ”Einstein”-manifold.

Definition 11.24 (Diameter). Let M be a Riemannian manifold, then

diam(M) := sup{d(p, q) | p, q ∈ M} ∈ R ∪ {∞}

is called the diameter of M.

Theorem 11.25. Let M be a complete manifold, then

diam(M) < ∞ ⇔ M is compact

Proof.

”⇒”: diam(M) < ∞, then M closed and bounded, thus compact.

”⇐”: d : M × M → R is continuous, thus takes its maximum. ! diam(M) < ∞.

Theorem 11.26 (Bonnet-Myers). Let M be a complete Riemannian manifold such that

Ric(X, X) ≥ 1
r2 〈X, X〉

holds for all X ∈ TM, then
diam(M) ≤ πr



96 11.2. BONNET-MYERS’S THEOREM

Proof. Choose p, q ∈ M. L := d(p, q) > 0.
By Hopf-Rinow there is an arclength-parametrized geodesic γ : [0, L] → M with γ(0) = p
and γ(L) = q, i.e. L = d(p, q).

Now choose a parallel orthonormal frame field X1, . . . , Xn along γ with X1 = γ′ and define
vector fields Yi ∈ Γ(γ∗TM) by

Yi(s) = sin
3

πs
L
4
Xi(s)

We know want to create a variation with fixed end points, therefore define variations

α̃i : (−ε, ε)× [0, L] → M

of γ by
α̃i(t, s) = exp(tYi(s)) and denote γi

t = α̃i(t, .)

Thus with
αi : (−ε, ε)× (−ε, ε)× [0, L] → M, αi(u, v, s) := α̃i(

u+v
2 , s)

we have

X(s) :=
∂αi

∂u

0000
(0,0,s)

= Yi(s)

Y(s) =
∂αi

∂v

0000
(0,0,s)

= Yi(s)

Then we use the second variational formula of length: If g : (−ε, ε) → R, g(t) = L(γt), then
g has a global minimum at t = 0, i.e. 0 ≤ g′′(0). Thus with ηt(s) := α̃(t, s) = α(t, t, s)

0 ≤ g′′(0) = d2

dt2 |t=0E(ηt) =
∂2

∂u∂v |u=v=0L(γi
u,v) = −

" L

0
〈Yk, Y′′

k + R(Yk, γ′)γ′〉

Since Yk(s) = sin
3

πs
L
4
Xk, we have Y′′

k (s) = −(π
L )

2 sin
3

πs
L
4
Xk(s). Thus, for each k,

(πs
L )2

" L

0
sin2(π

L ) = −
" L

0
〈Y′′

k , Yk〉 ≥
" L

0
〈R(Yk, γ′)γ′, Yk〉 =

" L

0
sin2(πs

L )〈R(Xk, γ′)γ′, Xk〉.
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By assumption Ric(X, X) ≥ 1
r2 〈X, X〉. Thus summing over k = 2, . . . , n we get

n−1
r2

" L

0
sin2(πs

L ) ≤ (n − 1)
" L

0
sin2(πs

L )Ric(γ′, γ′)

=
n

∑
k=2

" L

0
sin2(πs

L )〈R(Xk, γ′)γ′, Xk〉

≤ (n − 1)(π
L )

2
" L

0
sin2(πs

L ).

As
" L

0
sin2(πs

L ) > 0, this means that π2

L2 ≥ 1
r2 and since r ≥ 0 and (·)2 is monotone we have

π

L
≥ 1

r
⇔ L ≤ πr

Then, since L = d(p, q) we have d(p, q) ≤ πr so as p and q are arbitrary we finally yield
diam(M) ≤ πr.

11.3 Poincaré-Hopf Index Theorem

For now the setup will be the following: Let M be an oriented manifold of dimension 2 not
necessarily with a boundary and E an oriented euclidean rank 2 vector bundle over M.

Remark 11.27. If V is some 2-dimensional vector space with det defined on it, then we get
a 90◦-rotation

J : V → V with det(X, Y) = 〈X, JY〉 and J2 = I

This means, that if λ = α + iβ ∈ C and ψ ∈ V then

λ · V := αψ + βJψ

This means V becomes a 1-dimensional complex vector space. In this sense the vector
bundle E can also be viewed as a 1-dimensional vector bundle, a ”complex-line-bundle”.

Now suppose E has ψ ∈ Γ(E) with ψp ∕= 0 for all p ∈ M, i.e. a nowhere vanishing section.
Then E also has a section ψ ∈ Γ(E) that satisfies |ψp| = 1 for all p ∈ M. Now, as we already
know, E comes wirh a metric connection ∇.
For some X ∈ TpM we have

0 = 1
2 X 〈ψ, ψ〉 = 〈∇Xψ, ψ〉

so
∇ψ = η Jψ with η ∈ Ω1(M)

Definition 11.28. (rotation form) The 1-form η in our consideration above is called the rotation
1-form of ψ.
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Theorem 11.29. Regarding our considerations above it holds that

R∇(X, Y)ψ = dη(X, Y)Jψ

Proof. Let X, Y ∈ TpM and ψ ∈ Γ(E) then with

∇Yψ = η(Y)Jψ ∇Xψ = η(X)Jψ ∇[X,Y]ψ = η([X, Y])Jψ

we can easily calculate

R∇(X, Y)ψ = ∇X∇Yψ −∇Y∇Xψ −∇[X,Y]ψ

= (Xη(Y)Jψ − Yη(X)Jψ − η([X, Y])) Jψ + η(Y)J∇Xψ − η(X)J∇Yψ

= (dη(X, Y)− η([X, Y])) Jψ + η(Y)Jη(X)Jψ − η(X)Jη(Y)Jψ

= dη(X, Y)Jψ − η([X, Y])Jψ − η(Y)η(X)ψ + η(X)η(Y)ψ
= dη(X, Y)Jψ

where we used that J J = −I.

Example 11.30. Let M be a Riemannian manifold, E = TM and Y ∈ Γ(TM) with |Y| = 1.
Then with X := −JY we have for the volume form

ωM(X, Y) = 1

as well as
K = 〈R(X, Y)Y, X〉 = 〈dη(X, Y)JY, X〉 = −dη(X, Y)

or in other words, we yield that
KωM = −dη

Definition 11.31 (curvature form). The 2-form Ω ∈ Ω2(M) defined by R∇ = −ΩJ is called
the curvature 2-form of ∇.

Theorem 11.32. If E has a nowhere vanishing section and ∂M = ∅, then the curvature form Ω
of any metric connection on E satisfies

"

M
Ω = 0

Proof. We have that Ω = −dη, therefore Stoke’s theorem tells us that
"

M
Ω = −

"

∂M
dη = −

"

∅
dη = 0

Corollary 11.33. For any Riemannian metric on T2 = S1 × S1 we have
"

T2
K = 0.

Corollary 11.34 (Hairy ball theorem). There is no vector field X ∈ Γ(TS2) without zeros.
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A little Differential Topology
Goal: Every rank n vector bundle over an n-dimensional manifold has a section ψ with
only isolated zeros.
To achieve this goal we will need a short introduction into differential topology, but as this
is no course on this topic we will only clarify some vocabulary.

Definition 11.35 (convergence in C∞-topology). A sequence of maps f1, f2, . . . : M → M̃
is said to converge in the C∞-topology, if their representations in charts converge uniformly on
compact subsets, together with all their partial derivatives.

Definition 11.36 (transversal intersection). Two maps fi : Mi → M̃ i = 1, 2 are said to
intersect transversally if for every p1 ∈ M1, p2 ∈ M2 with q := f1(p1) = f2(p2) we have that

d f1(Tp1 M1) + d f2(Tp2 M2) = TqM̃

Theorem 11.37 (transversality theorem). Given a smooth map f1 : M1 → M̃, then the set of
those smooth f2 : M2 → M̃ which are transversal to f1 is dense in the C∞-topology.

Example 11.38. Given two transversal smooth maps f1, f2 : R → R3, then

f1(R)
#

f2(R) = ∅ .

Now, let E → M be a rank n vector bundle over an n-dimensional manifold and ρ0 ∈ Γ(E)
the zero section, i.e. ρ0(p) = 0 ∀p ∈ M. Then the transversality theorem yields that there
is ψ ∈ Γ(E) intersecting ρ0 transversally. Let p ∈ M be a zero of ψ. Then, by using a frame
field and coordinates on M, we can assume without loss of generality that ψ : Rn → R2n

is the graph of a function f transversal to the graph of the zero function. In particular, the
differential of f must have full rank, which implies that ψ has an isolated zero.

If M is a compact oriented surface and E is an oriented Euclidean vector bundle over M,
i.e. a hermitian line bundle, then these zeros come with sign—the determinant of the
differential of f —which is the winding number indpψ ∈ {−1, 1} of ψ around p (running
around a small positively oriented circle around p).
If J ∈ ΓEnd(E) denotes the positive 90-degree rotation the we have seen that the curvature
of a connection ∇ on E satisfies

R∇ = −Ω∇ J

for some Ω∇ ∈ Ω2M.

Theorem 11.39. Let E → M be a hermtian line bundle with connection ∇. Then

deg E := 1
2π

"

M
Ω∇

is independent of ∇.

Proof. is left as an exercise.
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Theorem 11.40 (Poincaré–Hopf Index Theorem). Let E → M be a hermtian line bundle over
a compact oriented surface and ψ ∈ ΓE have only isolated zeros p1, . . . , pn ∈ M , then

degE = ∑
i

indpi ψ .

Proof. Choose a metric connection ∇ on E and charts (Ui, ϕi) with Ui ∋ pi, ϕi(Ui) = B2(0)
and ϕi(pi) = 0. Let Vi = ϕ−1

i (Bε(0)). Then Mε := M \ ∪iV̊i is a manifold with boundary,

degE = lim
ε→0

"

Mε

Ω∇ .

Without loss of generality we can assume that |ψ| = 1 on Mε. Then Ω∇ = −dη, where η
denotes the rotation form of ψ. Thus

"

Mε

Ω∇ = −
"

∂Mε

η = ∑
i

"

∂Vi

η .

Now choose ϕi ∈ Γ(E|Ui) with |ϕi| = 1. Then ψ|Ui = y1ϕi + y2 Jϕi and thus
"

∂Vi

η =
"

∂Vi

〈dy1ϕi + y1∇ϕi + dy2ϕi + y2∇ϕi, y1 Jϕi − y2ϕi〉

=
"

∂Vi

y1dy2 − y2dy1 + (y2
1 + y2

2): ;< =
=1

〈∇ϕi, Jϕi〉

= 2π indpi ψ −
"

Vi

Ω∇

11.4 Gauß–Bonnet Theorem

Poincaré–Hopf index theorem: Let M be a compact oriented surface and E → M be a rank
2 oriented Euclidean vector bundle over M. Then there is degE ∈ Z such that

1. For every metric connection ∇ on E we have R∇ = −Ω∇ J with Ω∇ ∈ Ω2(M; R) and
"

M
Ω∇ = 2π degE .

2. For every ψ ∈ ΓE with isolated zeros p1, . . . , pn, then

∑
i

indpi ψ = degE .

Recall: If 〈., .〉 is a Riemannian metric on an oriented surface with area form dvolM, then

Ω∇ = K dvolM .

Corollary 11.41. If M is a compact oriented Riemannian surface with sectional curvature K,
then "

M
K dvolM = 2π degTM .
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Corollary 11.42. The Euler characteristic χ(M) := degTM does not depend on the Riemannian
metric.

Proof. Given two Riemannian metrics 〈., .〉i on M. Then linear interpolation yields a con-
tinuous family of metrics 〈., .〉t, t ∈ [0, 1]. Also K and dvolM depend continuously on t, and
thus the degree of TM which as integer number must then be constant.

Definition 11.43. Let M be a manifold, f ∈ C∞(M). Then p ∈ M is called a critical point, if
dp f = 0.

Exercise 11.44. If p ∈ M is a critical point and ϕ = (x1, . . . , xm) is a chart around p and we
define Hessp : TpM × TpM → R by

Hessp(X, Y) = ∑
i,j

∂2 f
∂xi∂xj

aibj ,

where X = ∑
i

ai
∂

∂xi
and Y = ∑

j
bj

∂
∂xj

. In fact, if γ is a curve such that γ(0) = p, then

Hessp(γ
′, γ′) = d2

dt2 ( f ◦ γ) .

If V is a finite-dimensional Euclidean vector space, then:

a) For X ∈ V define X"
"

V∗ by X"(Y) = 〈X, Y〉.

b) For ω ∈ V∗ define ω#
"

V by ω(Y) = 〈ω#, Y〉.

Definition 11.45. If M is Riemannian and f ∈ C∞M. Then the gradient of f is defined by
grad f := (d f )# ∈ Γ(TM), i.e.

〈grad f , X〉 = d f (X) .

Definition 11.46. Let M be a Riemannian manifold, p ∈ M and f ∈ C∞M. Then the Hessian
of f is defined as

Hessp f (X, Y) := 〈∇Xgrad f , Y〉 .

Exercise 11.47. Show that the two notions of Hessians are consistent when we are at a
critical point.

Theorem 11.48. The Hessian is symmetric:

Hessp(X, Y) = Hessp(Y, X) .

Proof.

〈∇Xgrad f , Y〉 = X〈grad f , Y〉 − 〈grad f ,∇XY〉 − YX f + 〈grad f ,∇YX〉
〈∇Ygrad f , X〉 = [X, Y] f − 〈grad f ,∇XY −∇YX〉 .
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Definition 11.49. Let M be a manifold, f ∈ C∞M. Then:

a) A critical point p ∈ M is called Morse-critical point if Hessp f is non-degenerate.

b) f is called a Morse function, if all critical points of f are Morse. (! critical points are
isolated)

The following theorem is a variant of the transversality theorem.

Theorem 11.50. Morse functions are dense in C∞M with respect to the C∞-topology.

Morse-critical points on a surface are either
G
H

I

local minima, i.e. Hessp f is positive-definite,
local maxima, i.e. Hessp f is negative-definite,

saddle point, i.e. Hessp f is indefinite.

Theorem 11.51. Let M be a compact oriented surface and f ∈ C∞M be a Morse function. Then

χ(M) = # minima − # saddles + # maxima .

Proof. Immediately follows from the Poincaré–Hopf index theorem.

Remark 11.52. If we have a cell-decomposition of the surface, then we can construct a
Morse function which has exactly one local maximum on each face, exactly one saddle on
each edge and a local minimum at each vertex. Thus

χ(M) = # vertices − # edges + # f aces .

Theorem 11.53 (Classification of surfaces). Two connected compact oriented surfaces are dif-
feomorphic if and and only if they have the same Euler characteristic.

Theorem 11.54 (Poincaré-Hopf). Let M be a compact, oriented surface without boundary, E
an oriented euclidean rank 2 vector bundle over M with metric connection ∇ and ψ ∈ Γ(E) with
isolated zeros p1, . . . , pk, then

"

M
Ω∇ = 2π

k

∑
j=1

indpj ψ

Proof. As our semester is already over we will not proof this remarkable theorem, but rather
enjoy its beauty.

Remark 11.55. One can also define the notion of the degree of a vector bundle by

deg E :=
k

∑
j=1

indpj ψ

which simplifies the above equation from theorem 11.54 to
"

M
Ω∇ = 2π deg E
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In particular for oriented surfaces the equality deg(TM) = χ(M) = 2(1 − g) holds, where
χ(M) is the ”Euler characteristic” and g the genus of M. So in this special case we have

χ(M)

#
≤ 2
∈ 2Z

which usually would have to be checked, but for lack of time we just skip this.
As a final interesting observation we see that

χ(S2) = deg(TS2) = 2 !
"

S2
K = 4π

11.5 Analysis on Riemannian manifolds

Let M be an n-dimensional oriented manifold. For f ∈ C∞M we have grad f ∈ ΓTM
defined by 〈grad f , X〉 = d f (X) = X f . Using the sharp operator this means (d f )# = grad f .
Equivalently, d f = (grad f )".
On each tangent space TpM there is a unique volume form (dvolM)p such that

dvolM(X1, . . . , Xn) = 1

for each positively oriented orthonormal basis X1, . . . , Xn of TpM. This form dvolM ∈ Ω2M.
Given Y ∈ ΓTM we can build the interior product iYdvolM ∈ Ωn−1M which is given by
inserting Y into the first slot of dvolM,

iYdvolM(X2, . . . , Xn) = dvolM(Y, X2, . . . , Xn) .

Definition 11.56. Let Y ∈ ΓTM. The divergence div Y ∈ C∞M of Y is then defined by

div Y dvolM = d(iYdvolM) .

Theorem 11.57. div Y = tr∇Y.

Proof. Let X1, . . . , Xn ∈ ΓTM be an orthonormal local frame field which is parallel along
radial geodesics outgoing form p. In particular, ∇Xi vanishes at p. Let ωi ∈ Ω1M denote
the corresponding dual frame field, i.e. ωi(Xj) = δij. We have

dωi(Xj, Xk)p = Xj,pωi(Xk)− Xk,pωi(Xj)− ωi([Xj, Xk]p)

= Xj,pδik − Xk,pδij − ωi((∇Xj Xk −∇Xk Xj)p) = 0 .

Now, let ∑ yiXi := Y and define

η :=
n

∑
i=1

(−1)i−1yiω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn .

Inserting ordered (n − 1)-tuples of Xj’s one easily verifies that η = iYdvolM. Moreover,

(d(iYdvolM))p = (
n

∑
i=1

ω1 ∧ · · · ∧ dyi ∧ · · · ∧ ωn)p .
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Now, as yj = 〈Y, Xj〉, we get dpyj = 〈∇Y|Tp M, Xj〉 and hence

dyj = ∑(Xiy1)ωi .

Thus we get
d(iYdvolM)p = (∑〈∇XiY, Xi〉)p

and conclude div Y = tr∇Y.

In Rn, the divergence just defined is consistent with the usual definition: div Y = ∑
i

∂iyi.

By Stokes’ theorem we immediately obtain the following theorem.

Theorem 11.58 (Divergence theorem). Let M be a compact oriented Riemannian manifold
with boundary and Y ∈ ΓTM. Then

"

M
div Y =

"

∂M
〈N, Y〉 ,

where N is the outward-pointing unit normal along the boundary.

Note: div Y is independent of (local) orientation and thus makes also makes sense for
non-orientable Riemannian manifolds.

Definition 11.59. Let M be a Riemannian manifold. Then the Laplacian ∆ : C∞M → C∞M
of M is given by

∆ f = div grad f .

Clearly, ∆ f = tr Hess f .
Let M be a compact oriented manifold, then we can define a scalar product on C∞M as
follows

〈〈 f , g〉〉 =
"

M
f · g .

Theorem 11.60. For all f , g ∈ C∞M,

〈〈∆ f , g〉〉 = −
"

M
〈grad f , grad g〉 = 〈〈 f , ∆g〉〉 .

This follows immediately the divergence theorem together with the following useful lemma.

Lemma 11.61. For f ∈ C∞M and Y ∈ ΓTM,

div( f Y) = 〈grad f , Y〉+ f div Y .

Proof. This follows from the definition of div and the fact that

X" ∧ iXdvolM = 〈X, Y〉dvolM

which is easy to verify.
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Theorem 11.62. Let M be a compact oriented Riemannian manifold. Then

∆ f = 0 ⇔ f = const.

Proof. That’s an immediate consequence of the last theorem.

Let us look for a moment at the finite-dimensional case.

Theorem 11.63. Let V be a finite-dimensional Euclidean vector space, dim V = n, and A : V →
V be linear. Then

im A = (ker A∗)⊥ .

Proof. Let x ∈ im A, w = Av, and u ∈ ker A∗. Then

〈w, u〉 = 〈Av, u〉 = 〈v, A∗u〉 = 0 .

Hence we have im A ⊂ (ker A∗)⊥. To see equality, we choose an orthonormal basis. Then A
is represented by a matrix and A∗ is its transpose. Thus we find that dim im A = dim im A∗

and the dimension theorem yields

dim ker A∗ = n − dim im A∗ = n − dim im A = dim(im A)⊥ .

Thus we have equality.

It is hard work to show that the previous theorem holds also for the case that V = C∞M
and A = ∆ (seee e.g. Warner’s ’Foundations of differentiable manifolds and Lie groups’).
We just take this here for granted:

Theorem 11.64. Let M be a connected oriented compact Riemannian manifold and g ∈ C∞M.
Then:

∃ f ∈ C∞M : ∆ f = g ⇔
"

M
g = 0 .

Proof. g ∈ im ∆ ⇔ g ⊥ ker ∆ = R1 ⇔ 0 = 〈〈g, 1〉〉 =
"

M
g · 1 =

"

M
g.

In fact one can prove (see Warner as well) that

a) There is a complete orhtonormal system f1, f2, . . . ∈ C∞M of eigenfunctions.

b) All eigenspaces Eλ = { f ∈ C∞M | ∆ f = λ f } are finite-dimensional.

E.g. on the 2-sphere M = S2, the smallest eigenvalue is (as always) zero and the corre-
sponding eigenspace consists of constants. The next eigenspace consists of restrictions of
linear functions and the eigenspaces for larger eigenvalues consist of so called spherical
harmonics.
On the circle M = S1 = R/2πZ the Laplacian is given by the second derivative ∆ f = f ′′.
Hence the eigenfunctions with respect to an eigenvalue λ must be of the form cos

3√
nt
4

and sin
3√

nt
4
. So for

√
n ∈ Z. Thus the eigfenvalues are λ = n2 with n ∈ Z. A complete

orthonormal system of eigenfunctions is then given by the Fourier basis

1
2π cos(nt), 1

2π sin(nt), n ∈ Z .
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This can be easily used to solve the heat equation ḟ = ∆ f or the wave equation f̈ = ∆ f on
the circle.
Applications to surfaces: Let M be a Riemannian surface with metric 〈., .〉 and g̃ = e2u〈., .〉
be a conformally equivalent metric. We leave it as an exercise to show that the Gauß-
curvatures satisfy the equation

∆u = K − e2uK̃ .

Conversely, on a torus we have
"

M
K = 0 and we can alsways solve for u such that K̃ = 0.

Thus we have the following theorem.

Theorem 11.65. Each Riemannian 2-dimensional torus is conformally flat.

11.5.1 Hodge-star operator

Let V be an oriented Euclidean vector space, dim V = n < ∞. Then we have a unique
volume form det ∈ ΛnV∗ such that for any positively oriented orthonormal basis X1, . . . , Xn

det(X1, . . . , Xn) = 1 .

Choose an orthonormal basis X1, . . . , Xn ∈ V and let ω1, . . . , ωn ∈ V∗ denote its dual basis,
i.e. ωj = X"

j . Then
ωi1 ∧ · · · ∧ ωik , 1 ≤ i1 < · · · ik ≤ n

forms a basis of ΛkV∗. Define a Euclidean inner product 〈., .〉 on ΛkV∗ by demanding this
basis to be orthonormal.

Theorem 11.66. This Euclidean inner product on ΛkV∗ is independent of the choice of
X1, . . . , Xn.

Proof. Just a few pages...

Theorem 11.67. Let η ∈ ΛkV∗. Then there is a unique ∗η ∈ Λn−kV∗ such that

ω ∧ ∗η = 〈ω, η〉det

for all ω ∈ ΛkV∗.

Proof. Consider the map ϕΛkV∗ → (Λn−kV∗)∗ defined by ω ∧ α = ϕ(α)det). This map is
an isomorphism as one can check on a basis. Now define ∗η = ϕ−1(ω 2→ 〈ω, α〉).

Example 11.68. E.g., if dim V = 5. Then ∗(ω1 ∧ ω2) = −ω3 ∧ ω4 ∧ ω5.

For ω ∈ ΛkV∗ a basis form, then 〈ω ∧ ∗ω = 〈ω, ω〉det = ω1 ∧ · · · ∧ ωn.

Theorem 11.69. Let ω ∈ ΛkV∗. Then ∗∗ ω = (−1)k(n−k)ω.

Proof. Check this on a basis. E.g. if ω = ω1 ∧ ωk, then ∗ω = ωk1 ∧ · · · ∧ ωn. Thus

det = ω ∧ ∗ω = (ωk+1 ∧ · · · ∧ ωn) ∧ (−1)k(n−k)(ω1 ∧ ωk) = ∗ω ∧ ∗∗ ω .
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This means:

∗∗ ω = ω unless
9

n is even
k is odd

Example 11.70. Let M is an oriented Riemannian surface and J denote the 90-degree rota-
tion in the posotive sense, J2 = −1, J∗ = −J, 〈JX, Y〉 = dvolM. Let X ∈ TpM, |X| = 1. Then
X, JX is a positively oriented orthonormal basis of TpM. Claim: For ω ∈ Ω1M we have

∗ω = −ω ◦ J .

Example 11.71. Let M = R3. Then ∗ f = f det, ∗dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗dz = dx ∧ dy
and ∗∗ = Id.

Theorem 11.72. Let ω ∈ Ω1M. Then ∗ω = iω"dvolM.

Proof. We can assume that ω = ω1, where ωj is a positively oriented orthonormal basis.
Then one easily verifies that

∗ω = ω2 ∧ ωn = i
ω"

1
(ω1 ∧ · · · ∧ ωn)

— check on oriented (n − 1)-tuples.

11.5.2 Combining ∗ and d

Definition 11.73. Define δ : Ωk M → Ωk−1M by

δω := (−1)k+k(n−k) ∗ d ∗ ω = (−1)k ∗−1 d ∗ ω .

Theorem 11.74. Let M be compact. Then δ = d∗, i.e. for all ω ∈ Ωk M, η ∈ Ωk+1M we have
"

M
〈dω, η〉 =

"

M
〈ω, δη〉 .

Proof. This follows by Stokes’ theorem:
"

M
〈ω, δη〉 =

"

M
ω ∧ ∗δη =

"

M
(−1)k+1ω ∧ d ∗ η =

"

M
dω ∧ ∗η =

"

M
〈dω, η〉 .

Theorem 11.75. Let M be a compact oriented Riemannian manifold. Consider the restrictions

dk : Ωk M → Ωk+1M, δk : Ωk−1M → Ωk M .

Then
im dk = (ker δk)

⊥ im δk = (ker dk−1)
⊥

Proof. See Warner.
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The space of harmonic forms is defined as the intesection of closed and co-closed forms

harmk M := ker dk ∩ ker δk .

Theorem 11.76. dim harmk M < ∞ and

Ωk M = im dk−1 ⊕⊥ harmk M ⊕⊥ im δk+1M .

Proof. Easy to check. Hint: im dk1 ⊕ harmk M = ker dk, harmk M ⊕ im δk+1M = ker δk.


