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Fig. 1. Our inverse geometric locomotion optimization enables the discovery of, e.g., optimal snake undulation pa!erns for e"icient slithering locomotion from
a starting position (red flag), passing through landmarks (yellow flags), and reaching a prescribed target position (checkered flag), all while avoiding obstacles.
See video at 00:05.

Numerous tasks in robotics and character animation involve solving combi-
nations of inverse kinematics and motion planning problems that require
the precise design of pose sequences to achieve desired motion objectives.
Accounting for the complex interplay between body deformations and re-
sulting motion, especially through interactions with the environment, poses
signi!cant challenges for the design of such pose sequences. We propose a
computational framework to address these challenges in scenarios where the
motion of a deformable body is entirely determined by dynamic changes of
its shape. Complementing recent methods on the forward problem—mapping
shape sequences to global motion trajectories based on a geometric formula-
tion of locomotion—we address the inverse problem of optimizing shape
sequences to achieve user-de!ned motion objectives. We demonstrate the
e"ectiveness of our method through a diverse set of examples, producing
realistic shape sequences that result in desired motion trajectories.
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1 INTRODUCTION
Countless organisms at all scales use patterns of self-deformation
to achieve locomotion. Researchers have long been fascinated by
falling cats whose self-righting re#ex seems to defy the laws of
conservation of angular and linear momentum. Similarly intriguing
is the locomotion of tiny bacteria that wiggle their #agella, or the
powerful, slithering motions of snakes. What all these locomotion
strategies have in common is that translations and rotations of the
moving body are achieved solely through changes in the body’s
shape.
For instances of this geometric locomotion, the relationship be-

tween dynamic changes in shape and the resulting displacement
in the surrounding space can be reduced to conserved quantities,
so-called geometric momenta, which are given by the Euler-Lagrange
equations of appropriate variational principles. Prominent examples
include Euler’s principle of least action [1744] and Helmholtz’s
principle of least dissipation [1882].
Although based on a strict coupling between shape change and

the resulting dynamics, geometric locomotion is applicable to a wide
range of scenarios modeling unforced inertia-dominated motion of
shape-changing bodies in negligible media or the locomotion of or-
ganisms in dissipation-dominated environments. Examples include
a snake’s slithering on sand, as well as abstract and bio-inspired an-
thropomorphic and non-anthropomorphic robotic systems [Shapere
and Wilczek 1989a; Shammas et al. 2007; Zhao et al. 2022; Gross
et al. 2023].
In general, geometric locomotors, such as organisms in highly

viscous #uids, require sophisticated strategies to generate displace-
ments within the constraints imposed by the distinctive relationship
between their shape and motion. While a scallop can move in water
by a sequence of slow opening and fast closing, such an endeavor is
futile in low Reynolds number environments. According to Purcell’s
scallop theorem [1977], no cyclic shape change controlled by a single
degree of freedom can result in a net displacement. The situation
changes, when two scallops are connected, e.g., by a stick. With then
two degrees of freedom, a coordinated collaborative e"ort permits

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0003-0952-7063
HTTPS://ORCID.ORG/0000-0001-7970-5596
HTTPS://ORCID.ORG/0000-0003-4957-4825
https://doi.org/10.1145/3731187
https://doi.org/10.1145/3731187
https://orcid.org/0000-0003-0952-7063
https://orcid.org/0000-0001-7970-5596
https://orcid.org/0000-0003-4957-4825
https://doi.org/10.1145/3731187


2 • #entin Becker, Oliver Gross, and Mark Pauly

the system to achieve a net displacement, thus overcoming the
restriction by Purcell’s theorem—even if only in a single direction
(Figure 2).

The skillful locomotion strategies we observe in biological systems
have been re!ned over centuries of evolution to gain a competitive
advantage over peers and predators. However, manual design of
geometric locomotion for character animation or robotics is highly
challenging. Consider, for example, a snake turning in a con!ned
space (see also Figure 8). The objective here is to achieve a net
rotation of the snake’s body solely through deformations of its
shape. The unknown pose sequence needs to be compatible with
the morphology of the snake’s body, respect the corresponding
least-dissipation principle of motion, and avoid non-physical con-
!gurations due to collisions with the environment. This leads to
a challenging inverse design problem that necessitates advanced
computational tools.
The problem is aggravated by the sensitive coupling between

shape change and motion, exempli!ed by the precise sequences
of poses required, for example, by gymnasts or platform divers to
perform somersaults and twists, which highlight the narrow margin
of error for the input data of a simulation [Hodgins et al. 1995;
Wooten and Hodgins 1996].

1.1 Contributions
The present paper addresses the above issues by proposing a method
to solve the following problem:

E!ciently "nd shape sequences that yield desired motion
trajectories from geometric locomotion.

Our core technical contribution is an e$cient optimization scheme
to solve inverse geometric locomotion problems. The presented
framework, based on the concept of geometric mechanics, explic-
itly takes advantage of geometric symmetries and structure of the
con!guration space that give rise to conserved quantities. These
integrals of motion allow us to transform the inverse problems
into optimization problems de!ned solely over the shape evolution
through time. Contrasting Newtonian physics simulations, the corre-
sponding motion trajectories are fully determined by the condition
of momentum conservation, a !rst order condition, which is equiv-
alent to the equations of motion and can be strictly enforced by
employing a variational integrator. We de!ne a variety of high-level
design objectives, such as multiple targets for position, orientation,
and e$ciency, incorporate collision avoidance and con!nement
constraints, and leverage reduced models to de!ne the underlying
shape space of a given deformable body.

To enable inverse design, we implement a di"erentiable simulation
framework based on the geometric variational integrator of Gross
et al. [2023]. We analytically derive the sensitivities of our design
objectives with respect to a body’s shape using adjoint state vectors,
which facilitates e$cient numerical solutions using standard opti-
mization methods. Moreover, we show how our inverse formulation
allows for the re!nement of existing motion sequences to better
adhere to a variety of user-speci!ed targets, as well as the discovery
of new gait patterns for complex locomotion tasks and arbitrary
body shapes. Our framework thus enables novel applications in
character animation and robotic design.

Fig. 2. According to Purcell’s scallop theorem, cyclic shape change controlled
by a single degree of freedom cannot produce net motion in highly viscous
media [Purcell 1977]. However, with two degrees of freedom, two scallops
a!ached to a stick can cooperate to produce a desired net displacement. See
video at 00:38.

All data, the full source code of our method, and scripts to re-
produce all examples in the paper are available for download at
https://go.ep#.ch/igl/.

1.2 Related work
Understanding how morphological and kinematic properties in#u-
ence key quantities such as locomotion speed, energy consump-
tion, and turning capabilities for the geometric locomotion of, e.g.,
biological organisms or robotic locomotors remains an open chal-
lenge [Chong et al. 2023; Rieser et al. 2024]. To this day, optimal
displacement strategies for even for highly simpli!ed geometric
locomotors remain elusive and analytical results are scarce [Purcell
1977; Becker et al. 2003; Tam and Hosoi 2007; Giraldi et al. 2015].
Therefore, character animation, optimal gait design and optimal
control for scenarios governed by geometric locomotion remain a
challenging tasks.

Despite steady progress in highly specialized numerical methods
for studying geometric motion strategies [Shammas et al. 2007;
Ramasamy and Hatton 2019; Bing et al. 2022; Chong et al. 2023],
there is still a lack of an e"ective, broadly applicable tool for tackling
inverse problems in geometric locomotion—a gap that we address
with our proposed method. Our computational treatment faces
several challenges. First, the need for a meaningful and expressive
representation of character deformations to e"ectively model shape-
changing bodies. In addition, a model for the dynamics of geometric
locomotion must be suited to serve in a variety of applications
ranging from character animation as well as the exploration and
optimization of locomotion strategies. This requires not only an
accurate representation of the distinct interplay between animates
and their motion, but also e$cient methods for interpolation and
optimization of both shapes and trajectories.

Shapes and deformations. When modeling shape-changing char-
acters, methods grounded in physical principles achieve realistic
deformations by assigning material properties, typically assuming
some degree of rigidity [Alexa et al. 2000] or elasticity [Martin et al.
2011; Kavan and Sorkine 2012]. These approaches have also been
combined with modal actuations [Hildebrandt et al. 2011, 2012;
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Benchekroun et al. 2024]. Moreover, shape interpolations deter-
mined as intrinsic, locally shortest paths obtained from exploiting
the geometric structures of the “space of shapes” yield realistic
sequences of shape deformations [Heeren et al. 2014; Hartman et al.
2023a,b; Bauer et al. 2024]. As demonstrated by Sassen et al. [2024],
the geometry of these shape spaces can be modi!ed to naturally
account for collision avoidance.

Simulation and control of motion trajectories. For motion planning
tasks, methods that provide direct control over trajectories in the
form of motion objectives such as targets, checkpoints or seman-
tics [Ratli" et al. 2009; Aristidou et al. 2018] are typically preferred
over frameworks which rely on the exploration of large numbers of
scenes in a “needle in a haystack” scenario [Goel and James 2022].

There are a number of approaches to character animation based
on the interpolation of a sparse set of keyframes, including but not
limited to space-time constraints [Witkin and Kass 1988], physics-
based and FEM-based interpolation [Barbi% et al. 2009], and deep
learning frameworks [Harvey et al. 2020; Qin et al. 2022]. Force-
based controllers based on Newtonian physics simulations have
been successfully implemented by Hodgins et al. [1995]; Wooten
and Hodgins [1996] for complex animation tasks such as athletes
running, cycling, vaulting, and platform diving, while Brandt et al.
[2018] perform simulations in a reduced linear shape space using
projective dynamics. Coros and colleagues [2012] implicitly model
muscle actuation of elastic bodies: The rest shapes are optimized as
a time sequence so that the motion trajectories resulting from inter-
actions with the environment and induced deformations minimize
user-de!ned objective functions. Jia et al. [2023] demonstrate how
seamlessly looping physical animations can be synthesized. More
recently, Kang et al. [2024] approached trajectory optimizations
with reinforcement learning, while, e.g., di"erentiable simulation
frameworks have been successfully employed for the inverse design
of various animation tasks [Geilinger et al. 2020; Du et al. 2021b;
Huang et al. 2024; Newbury et al. 2024] and have found application
in biomechanics [Du et al. 2021a; Zhang et al. 2022].

Coupling with ambient media. In certain scenarios, the in#uence
of the surrounding medium cannot be neglected. To address this,
Kwatra et al. [2010] use a data-driven approach to create realistic
simulations of aquatic creatures, while Tan et al. [2011] optimize
their swimming gaits by considering a two-way coupling between
the animate and the #uid. Computation times can be drastically
reduced by means of highly simpli!ed models which do not require
the simulation of an ambient #uid. For example, methods based on a
localized treatment of the applied forces [Gray and Hancock 1955]
have been successfully applied for underwater simulation [Weiß-
mann and Pinkall 2012; Soliman et al. 2024a]. These simple models
have been incorporated in controller-based animations of birds [Wu
and Popovi& 2003] or optimal control methods for underwater ani-
mals [Min et al. 2019].

Geometric locomotion. Contrasting the above scenarios, Gross et al.
[2023] build on the fact that, in dissipation- or inertia-dominated
settings locomotion can be modeled based on a geometric problem
formulation [Shapere and Wilczek 1989a,c]. We provide a more
detailed discussion of the formalism in Section 2, and simply note

Fig. 3. Illustration of shape space S and configuration space M for the
simple deformable model of a 2D parallelogram with one fixed edge length.
The shape space S can be parameterized by two parameters, e.g., the second
edge length and a shear value. Di"erent positions of any given parallelogram
in world space di"er by a rigid body motion 𝐿𝐿 . All of these motions make
up the fiber in configuration space M corresponding to this shape.

here that the concept of geometric mechanics [Marsden and Ratiu
1999] has found successful application for the discovery of optimal
and novel locomotion strategies for legged, undulating [Shapere and
Wilczek 1989b; Ostrowski and Burdick 1998; Kobilarov et al. 2009;
Ramasamy and Hatton 2019; Chong et al. 2023], abstract mechanical
systems [Li et al. 2022] and #uid simulations [Nabizadeh et al. 2024].

1.3 Overview
The remainder of the paper is organized as follows: In Section 2, we
review the mathematical background of a geometric formulation of
locomotion that forms the basis of our inverse design optimization.
We de!ne a general inverse design problem for geometric locomotion
in Section 3 and present a set of design objectives that enable precise
user control over the resulting pose sequences. We show with a
series of examples how combinations of these objectives enable
e"ective exploration of complex motion trajectories. In Section 4
we discuss how the resulting continuous optimization problem can
be discretized and solved e$ciently using reduced models based
on standard numerical techniques. We also present derivations of
the required gradients and provide further implementation details.
Finally, in Section 5 we evaluate our method, identify limitations of
the current approach, and discuss directions for future work.

2 PRELIMINARIES
By treating the shape of a body in R3 as decoupled from its respec-
tive position in world space, the concept of geometric mechanics
allows us to examine theoretical and practical aspects of locomotive
systems based on the geometric structure of their con!guration
space [Marsden and Ratiu 1999].

2.1 Rigid body motions
Although this paper is focused on the dynamics of shape-changing
bodies, rigid body transformations will play an important role in our
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Fig. 4. Elements of the Lie algebra X ↑ ωε(3) , the tangent space of SE(3) at
the identity Id, are in a one-to-one correspondence with infinitesimal rigid
motions 𝑀𝑀 ↑ 𝑁𝑁 M, i.e., vertical tangent vectors at a configuration 𝑂 ↑ M
that do not a"ect the shape 𝑃 ↑ S.

method. These transformations are composed of a combination of a
rotation and a translation on R3, and take the form

𝐿 ↓→ 𝑀(𝐿) = 𝑁𝐿 + 𝑂

for a rotation matrix 𝑁 ↑ SO(3) and vector 𝑂 ↑ R3. The composition
of rigid body transformations satis!es the axioms of an algebraic
group with the identity map Id as its neutral element. The collection
of all rigid body motions is the Euclidean group SE(3).
In addition to its structure as an algebraic group, SE(3) is also a

smooth manifold, making it a so-called Lie group [Marsden and Ratiu
1999]. For a Lie group, the tangent space at the identity Id ↑ SE(3), or
Lie algebra, takes on a special role and is therefore given a dedicated
notation ωε(3) ! 𝑃IdSE(3). For the Euclidean group, the Lie algebra
consists of in!nitesimal rigid body motions X ↑ ωε(3).

2.2 Shapes and their position
Arguably, two bodies in R3 have the same shape if they only di"er
by a rigid body motion 𝑀 ↑ SE(3). This de!nes an equivalence
relation on the con"guration space M of all shapes in all positions
(Figure 3). The con!guration space M is a smooth manifold and
we denote the set of smooth vector !elds in its tangent bundle
𝑃M by ω𝑃M. The projection 𝑄 : M → S onto the shape space
S = M/SE(3) decomposes the con!guration space M into six-
dimensional submanifolds

{𝑅 = 𝑀(𝑆) | 𝑀 ↑ SE(3)} ↔ M ,

which consist of all possible positions 𝑅 of a shape 𝑆 (Figure 3).
Therefore, each of these "bers can naturally be identi!ed with SE(3)
(Figure 4).

Throughout the paper we will restrict our attention to the case
whereM is trivial1, i.e.,M = S ↗ SE(3), since in practice, shapes
provided by, e.g., an animator are positioned in a common reference
frame. In that case, the !rst component of any positioned shape
𝑅 = (𝑆,𝑀) ↑ M determines the shape 𝑆 ↑ S, while the second
component𝑀 ↑ SE(3) describes the Euclidean transformation needed
to move the shape from the common reference frame to its position
in world space.

1For general "ber bundles, M is only required to be locally isomorphic to S ↗
SE(3) [Frankel 2011].

The vertical distribution. Any repositioning of the positioned
shape 𝑅 ↑ M can be described as the action

𝑇(𝑅 ) = (𝑆,𝑇 ↘ 𝑀)
of an element of the Euclidean group𝑇 ↑ SE(3). Di"erentiating a one
parameter family 𝑈 ↓→ 𝑇𝑄 ↑ SE(3) with𝑇0 = Id and𝑇≃0 = X ↑ ωε(3) at
con!gurations 𝑅 ↑ M unveils a one-to-one correspondence between
elements of the Lie algebra X ↑ ωε(3) with so-called vertical vector
!elds 𝑉 ↑ ω𝑃M given by

𝑉𝑂 = 𝑅
𝑅𝑄

!!
𝑄=0𝑇𝑄 (𝑅 ).

The collection of all vertical vector !elds spans the vertical distribu-
tion 𝑊 ↔ 𝑃M. For excellent in-depth discussions of the concepts of
Lie groups, Lie algebras, and so-called "ber bundles in the context of
physics and mechanics, we refer the reader to, e.g., [Marsden and
Ratiu 1999] or [Frankel 2011].

2.3 Physical motion
When given a shape sequence 𝑆 : [0,𝑃 ] → S, simulation of its
dynamics can be thought of as repositioning the shapes from their
common reference frame to positions in world space that represent
a physically meaningful motion. From a geometric point of view,
this amounts to determining a lift, i.e., a map 𝑅 : [0,𝑃 ] → M with
𝑄 (𝑅 ) = 𝑆 . A priori, there are many possible choices of such lifts, most
of which carry no physical meaning (Figure 5).

In line with, for example, Euler’s principle of least action [1744] or
Helmholtz’s principle of least dissipation [1882], which are satis!ed
by stationary points of total kinetic energy or total energy dissipation,
respectively, we postulate that physical motions are extrema of
appropriate variational principles. Therefore, we consider variational
energies of the form

E(𝑅 ) = 1
2

∫ 𝑁

0
⇐𝑅 ≃, 𝑅 ≃⇒M 𝑋𝑈 . (1)

Here, ⇐·, ·⇒M denotes an SE(3)-invariant Riemannian metric on the
con!guration spaceM, that is, a Riemannian metric ⇐·, ·⇒M such
that for any two vectors ⇐𝑉 ,𝑌 ⇒M = ⇐𝑀(𝑉 ),𝑀(𝑌 )⇒M for all 𝑀 ↑ SE(3).
The speci!c choice of Riemannian metric determines the physics of
the system we model. If the sequence of shapes is given, we seek
lifts that are stationary points of Equation 1 under perturbations by
vertical vector !elds.

Fig. 5. A li$ from a shape space S to the configuration space M assigns a
position to any shape of a shape sequence. While generic li$s are generally
not physically meaningful, geometric locomotion can be characterized by
horizontal li$s.
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Horizontal distributions. The assignment of an SE(3)-invariant
metric allows us to de!ne the horizontal distribution 𝑍 ! 𝑊⇑, so
that

𝑃M = 𝑊 ⇓ 𝑍 .

That is, any tangent vector 𝑅 ≃ = (𝑆 ≃,𝑀≃) ↑ 𝑃𝑂M can be orthogonally
decomposed into an in!nitesimal shape change 𝑆 ≃ ↑ 𝑍𝑂 and an
in!nitesimal displacement 𝑀≃ ↑ 𝑊𝑂 . A vector !eld that completely
lies in the horizontal distribution is said to be horizontal.
For bodies initially at rest, the Euler-Lagrange equations are

satis!ed whenever the tangent vector !eld 𝑅 ≃ of the lift 𝑅 is horizon-
tal2 [Gross et al. 2023] (Figure 6). Intuitively, horizontal vector !elds
point as directly as possible to other !bers of the bundle, so that the
con!guration change does not contain any unnecessary rigid body
motion components, thus minimizing the energy.
But how does horizontally traversing the !bers lead to a net

displacement? The key to this geometric locomotion lies in the fact
that the horizontal vector !elds determine the notion of parallel
transport [Frankel 2011]. Speci!cally, the parallel transport of a
positioned shape 𝑅 ⇔ ↑ M along a shape sequence 𝑆 : [0,𝑃 ] → S
with 𝑄 (𝑅 ⇔) = 𝑆0 is given by horizontal lifts 𝑅 : [0,𝑃 ] → M, which
are determined by

𝑄 (𝑅 ) = 𝑆, 𝑅 ≃ ↑ ω𝑍 ↔ ω𝑃M . (2)

Geometric locomotion. In Riemannian geometry, we observe the
e"ects of curvature for example as angle defects when we parallel
transport vectors along a closed path (see inset).

Similarly, for geometric loco-
motion, the curvature of the con-
!guration space manifests when
we parallel transport a con!gura-
tion 𝑅 ⇔ ↑ M along periodic shape
sequences, or gaits 𝑆 : [0,𝑃 ] → S.
Then, despite the periodicity of 𝑆 ,
its horizontal lifts 𝑅 are in general
aperiodic (Figure 5). With the iden-
ti!cation 𝑄↖1 ({𝑆0}) " SE(3), the

geometric phase is the resulting net displacement of the body after
one gait cycle given by 𝑀↖10 𝑀𝑁 ↑ SE(3) (Figure 5).

The momentum map. We can measure the component of a tangent
vector 𝑌 ↑ 𝑃M along a provided rigid-body motion X ↑ ωε(3) by
means of the momentum map

𝑎 : 𝑃M → ωε(3)⇔, 𝑌 ↓→ 𝑎𝑆 .

A geometric momentum 𝑎𝑆 is evaluated on Lie algebra elements
X ↑ ωε(3) with corresponding vertical vector !eld 𝑉 ↑ ω𝑊 by

𝑎𝑆 (X) ! ⇐𝑌 ,𝑉 ⇒M .

This expression vanishes on the horizontal distribution i.e., 𝑎 |𝑇 ↙ 0,
while it identi!es the vertical distribution 𝑊 with the trivial bundle
𝑏 ↗ ωε(3).

The momentum of a lift 𝑅 is given by 𝑎𝑂 ≃ and measures the rigid-
body motion component of the in!nitesimal shape change 𝑅 ≃. For
2Notably, a variety of other problems relevant to computer graphics can be formulated
from a similar point of view [Montgomery 2002], i.e., as !nding horizontal sections of
suitable !ber bundles (see, e.g., [Padilla et al. 2019; Palmer et al. 2024; Nabizadeh et al.
2024]).

Fig. 6. Two li$s of the same curve 𝑃 in the shape space S to the configu-
ration space M. While tangent vectors 𝑂 ≃ of the upper one have vertical
components, the bo!om li$ is always tangent to the horizontal distribution
𝑇 making it a horizontal li$.

the present paper, the importance of the momentum map lies in the
fact that we can state an equivalent de!nition of parallel transport
(Equation 2) in terms of the momentum of the lift 𝑅 as

𝑄 (𝑅 ) = 𝑆, 𝑎𝑂 ≃ ↙ 0.

Since we can identify ωε(3)⇔ " R6, this condition3 is favorable
to enforce computationally when compared to Equation 2, since
it reduces to 6 equality constraints. In particular, from this point
of view and for the special case that E is the kinetic energy, the
components of the 𝑎𝑂 ≃ ↑ R6 recover the common angular and linear
momentum vectors (see, e.g., [Gross et al. 2023, App. A]).

3 INVERSE PROBLEMS
Choosing an appropriate Riemannian metric on the con!guration
spaceM allows lifting given shape sequences to physically mean-
ingful motions as shown in [Gross et al. 2023]. Here, we aim to
invert this process and solve for a body’s shape deformations such
that the corresponding motion best matches user-given objectives.

More precisely, we optimize for a shape sequence 𝑆 : [0,𝑃 ] → S
such that the motion represented by a horizontal lift to con!guration
space minimizes an objective function J of the form

J : (𝑅 : [0,𝑃 ] → M) → R∝0 . (3)

The resulting inverse design optimization is then formulated as

argmin
𝑃 : [0,𝑁 ]→S

J (𝑅 ) s.t. H(𝑆) = 𝑅 . (4)

As a function of 𝑅 = (𝑆,𝑀), objectives of this form can promote or
penalize shapes 𝑆 , the transformation 𝑀 positioning them, or both.
Note that determining whether an animators goal of of transitioning
between two keyframes, i.e., “moving from point A to point B” is
always possible typically requires extensive analysis [Montgomery
2002]. By solving our inverse problems (Equation 4) in a “least
squares” sense, we avoid this necessity.
We now present di"erent optimization objectives and illustrate

their application for speci!c inverse design tasks. In Section 3.2 we
will then discuss di"erent strategies to represent shape spaces using
reduced models to specify deformation semantics and simplify the
inverse design optimization.

3By conservation of the vertical component a similar statement remains true for
scenarios in which the momentum of the lift 𝑂 is non-zero (see, e.g., [Gross et al. 2023]).
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Fig. 7. The objects of the inverse problem Equation 4 for reaching a given
target transformation (Equation 5) with the additional constraint of fixed
start end shapes visualized in the geometric framework.

3.1 Inverse Design Objectives
Position and orientation targets. Themost basic objective is to provide
a desired relative target position and/or orientation for the !nal
pose in the shape sequence. This objective can be expressed as the
squared distance of the resulting net transformation to some target
transformation 𝑀⇔ ↑ SE(3), i.e.,

Jpos (𝑅 ) = 1
2 |𝑀

⇔ ↖ 𝑀↖10 𝑀𝑁 |2SE(3) , (5)

for a suitable norm | · |SE(3) on SE(3). For example, we can specify
a net displacement of the shape’s centroid to steer the shape to a
desired target location and/or control its !nal orientation at the
target. Figures 1, 2, 8, 9, 11, 12, 14, 18, 17, 19, 20 and 21 apply
this objective to illustrate how our inverse design optimization
automatically !nds non-trivial shape deformations that lead to
natural motion sequences without any need for user intervention.

We can provide more control to the user by specifying a series of
checkpoint transformations that the resulting trajectory should stay
close too:

Jcpt (𝑅 ) =
𝑈∑

𝑉=1
min

𝑄 ↑ [0,𝑁 ]
1
2 |𝑀

⇔
𝑉 ↖ 𝑀↖10 𝑀𝑄 |2SE(3) . (6)

This formulation comes with the additional bene!t that the time at
which the target is reached is not !xed a priori, but is also part of the
optimization. Figure 1 illustrates a complex motion with multiple
checkpoints.
We can generalize discrete checkpoints to continuous functions

on the entire motion sequence. Consider the example of a snake
turning by 180↘. Without additional constraints on the motion,
when initialized with a forward slithering trajectory, our algorithm
!nds a shape sequence that results in a “U-turn” motion (Figure 8
top left). This motion exhibits a signi!cant displacement of the
snake’s center along the path of motion. If an animator would rather
prefer a rotation “on the spot,” we can add a penalty term for the

Fig. 8. Gait discovery for a turning snake. The objective is to find a sequence
of non-self-intersecting body deformations such that the corresponding
motion leads to a net rotation of the snake by 180↘. Significantly di"erent
pose sequences are found when using no additional constraints (top le!),
when penalizing displacement of the centroid (top right), or when confining
the snake to a box (bo"om le!). If the box is too small, no solution is found
that does not violate the collision penalty (bo"om right). See video at 00:58.

displacement of the snake’s center of mass com such as

Jcom (𝑅 ) = 1
2

∫ 𝑁

0
|com(𝑅 0) ↖ com(𝑅 𝑄 ) |2𝑋𝑈 .

As illustrated in Figure 8 (top right), adding this penalty leads to a
qualitatively di"erent motion matching the user’s preference.

Collision avoidance. In addition to satisfying the user’s design intent,
we also de!ne objective functions to ensure the physical validity of
the resulting motion.

In particular, we want to avoid self-intersections of the locomotor.
Figure 8 showcases a rudimentary self-avoidance objective term,
where pairwise vertex distances are penalized using an Incremental
Potential Contact (IPC) barrier [Li et al. 2020]. While IPC requires
Continuous Collision Detection (CCD) to guarantee self-intersection
free trajectories, our optimization can !nd solutions that are collision-
free by su$ciently increasing the range of action of the IPC barrier.

Moreover, we want to avoid
collisions with obstacles in
the environment. We account
for obstacles by means of
an implicit potential barrier
c : R3 → R whose 0-level set
represents the boundary of the
obstacle. We also assume that
c satis!es the eikonal equation
almost everywhere, making it
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a pseudo Signed Distance Function (pseudo SDF). The admissible
space for the motion trajectory is now given by the set c↖1 (R+),
while c↖1 (R↖) represents the obstacle.

A collision occurs when the positioned shape intersects the obsta-
cle, that is, when c(𝑀𝑄 (𝐿)) ′ 0 for some 𝐿 ↑ 𝑆𝑄 at a time 𝑈 . Then, the
average constraint violation of a positioned shape at instantaneous
time 𝑈 is given by

C𝑄 (𝑅 ) = 1
Vol(𝑃𝑂 )

∫
𝑃𝑂

max(0,↖c(𝑀𝑄 (𝐿))) 𝑋𝑆𝑄(𝐿),

whose time average

Jcol (𝑅 ) = 1
𝑁

∫ 𝑁

0
C𝑄 (𝑅 ) 𝑋𝑈

is added as a penalty term to the optimization problem. Our method’s
ability to incorporate collision avoidance in this way is illustrated in
Figures 1 and 8.

Pose control. In some inverse design scenarios, we not only care
about the !nal motion trajectory, but also require direct control over
the pose sequence. For example, when optimizing for the complex
sequence of shape deformations for a cat’s “self-righting re#ex,” it
is essential that the animal lands on its legs in a speci!c pose to
cushion the landing (Figure 9). To this end, we can constrain the
start and points of the map 𝑆 : [0,𝑃 ] → S, thus !xing the start and
end pose of the shape-changing body (Figures 7 and 9).
Optimizing Equation 4 for cyclic gaits, constitutes an important

special case of this constraint. Here, we constrain the shape sequence
𝑆 : [0,𝑃 ] → S to have 𝑆0 = 𝑆𝑁 , thus giving identical start and end
poses (Figure 5).
Moreover, we can provide additional control over the resulting

shape sequence by specifying a reference sequence that encodes
certain pose semantics that should be preserved by the optimization.
In order to guide the optimization with the given shape sequence,
we de!ne a soft penalty term

Jguide (𝑅 ) = 1
2

∫ 𝑁

0
|𝑆⇔,𝑄 ↖ 𝑆𝑄 |2S 𝑋𝑈, (7)

where | · |S denotes a norm on the shape space. In Figure 9 we
demonstrate the e$cacy of this approach, where our optimized
solution retains the semantics of a given input sequence, while
achieving the desired target transformation.

3.2 Parametrizing shape spaces
In order to solve for shape sequences that satisfy the user-speci!ed
pose and motion targets, we need to parametrize the underlying
shape space. In general, standard geometry representations such as
triangle meshes do not directly provide a suitable parameterization,
since no notion of deformation semantics is encoded in the vertex
coordinates. To make our inverse design optimization more well-
posed, shape deformations should be encoded in a suitable rig, where
ideally all combinations of free parameters lead to semantically
correct shapes [Loper et al. 2023].
Conceptually, we parametrize the set of admissible shapes by a

di"erentiable map 𝑐 : P → S from a parameter space P ↔ R𝑊 to
the shape space S (Figure 10). The corresponding inverse problem

Fig. 9. Modeling a cat’s self-righting reflex requires a shape sequence that
achieves a desired target rotation in a forward simulation. Our method
allows users to guide the optimization output with semantics provided in
the form of an unregistered shape sequence to mitigate unrealistic behavior
stemming from, e.g., insu"iciently regular shape spaces. For the presented
experiments, the vertex positions as the degrees of freedom are paired with
an isometry constraint on the edge lengths. See video at 01:49.

then takes the form

argmin
𝑋 : [0,𝑁 ]→P

J (𝑅 ) s.t. H(𝑐 ↘ 𝑑) = 𝑅 . (8)

In the following, we brie#y discuss speci!c choices of shape space
parameterizations that we employed for the experiments throughout
this paper.

Fig. 10. Parametrizing semantically meaningful or regular parts of the shape
space allows reducing the dimensionality of the inverse problems, thus
stabilizing the optimization and improving the results.

Serpenoid shape space. The space of serpenoid curves [Hirose 1993]
captures a remarkably large fraction of the shapes observed in
undulating locomotors such as snakes and nematodes [Rieser et al.
2024] (Figures 1, 8 and 17). Serpenoid curves are plane curves,
determined in terms of their curvature function

𝑒 (𝑓, 𝑈) = 𝑔1 (𝑈) sin(2𝑄𝑓) +𝑔2 (𝑈) cos(2𝑄𝑓), (9)

which, by the fundamental theorem of plane curves, uniquely deter-
mines the curves’ shape up to a rigid body transformation [Pinkall
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and Gross 2024]. Here, the coordinate𝑔 (𝑈) = [𝑔1 (𝑈),𝑔2 (𝑈)] of the
shape in the shape space determines the coe$cients, while  > 0 is
the spatial frequency of body undulation.

Linkage mechanisms. Certain types of mechanisms that are com-
posed of linkages of rigid pieces typically come with a natural
parameterization of their shape spaces. For example, the hinged
mechanisms of Figures 11, 16, 18 and 19 can be parameterized by
the dihedral angles of the hinge joints, which automatically ensures
that shape elements remain rigid. However, such a parameterization
does not exclude self-intersecting con!gurations, which would need
to be treated separately, e.g., through appropriately coupled bound
constraints.

Fig. 11. Cyclic motion discovery on a very simple “Origami” shape composed
of four rigid triangles that are connected by rotational hinges along their
shared edges. See video at 02:12.

Point handles. A common strategy for describing shape deformations
is to manipulate a sparse set of point handles, from which the
deformed shape is then obtained by interpolation. These methods
come in many facets, typically minimizing the variational energies of
the deformed geometry [Botsch and Kobbelt 2004; Sorkine and Alexa
2007; Soliman et al. 2024b] or in cells of deformation cages [Joshi
et al. 2007; Dodik et al. 2023]. In Figure 12, we demonstrate the
compatibility of these approaches with our proposed method.

Modal bases. Another common approach to parameterizing reduced
shape spaces is to represent the deformed states of a rest shape in
terms of a sparse set of modal basis functions [Hildebrandt et al.
2011; Benchekroun et al. 2024]. To demonstrate the compatibility
of our method with this type of approach, we use eigenvectors
corresponding to the smallest 12 eigenvalues of the Laplace-Beltrami
operator [Pinkall and Polthier 1993] as a basis for each of the three
coordinate functions to represent deformed shapes of the sphere
(Figure 12).

Alternatively, we can use eigenvectors of the Hessian of a mem-
brane energy around the rest position as themodal basis [Hildebrandt
et al. 2012]. This allows localizing the deformations by modifying
the associated membrane sti"ness, as shown in Figures 14 and 20.

Fig. 12. A comparison of di"erent shape space parameterizations for a
spherical object. All examples achieve the same target displacement to the
right, but with largely di"ering pose sequences. With no constraints, all
vertex coordinates are free parameters, leading to a rather chaotic motion.
We obtain significantly smoother deformations when adding so$ constraints
that regularize the deformation to remain approximately isometric to the
spherical rest state and preserve its initial volume. Laplacian eigenmodes or
point handles also lead to more well-behaved deformations with the addi-
tional benefit of substantially reducing the dimensionality of the underlying
shape space. See video at 02:33.

4 METHOD OVERVIEW
For the computational treatment of the inverse geometric locomotion
problem we !rst discretize the continuous equations in space and
time (Figure 13), before deriving a practical algorithm to solve
them numerically. As we build upon the computational framework
of Gross et al. [2023], we brie#y review the relevant details. For a
more comprehensive exposition we refer to the original reference.

4.1 Discretization
We discretize the con!guration spaceM of all shapes in all positions
asM ! R3𝑌 , where each instantaneous state(

𝑅∞0 , . . . , 𝑅
∞
𝑌
)∞ ↑ M,

is represented by a collection of𝑖 vertices 𝑅 𝑍 ↑ R3, 𝑗 ↑ {0, . . . ,𝑖}.
Consequently, the discrete shape space is given by the quotient
S ! M/SE(3).

For better readability and more concise expressions we will mimic
notation from the smooth setup and also use the notation 𝑆 ↑ S𝑎

resp. 𝑅 ↑ M𝑎 for time-discrete sequences (𝑆1, . . . , 𝑆𝑎) ↑ S𝑎 in the
shape space S resp. (𝑅 1, . . . , 𝑅𝑎) ↑ M𝑎 in the con!guration space M,
whenever the context allows for it.
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Discrete variational energy. Discrete analogues of the variational
energies we consider are given by quadratic forms

E(𝑅 ) = 1
2

𝑎↖1∑
𝑏=1

⇐ε𝑅 (𝑏,𝑏+1) ,ε𝑅 (𝑏,𝑏+1) ⇒M, (10)

where ε𝑅 (𝑏,𝑏+1) ! 𝑅 𝑏+1 ↖ 𝑅 𝑏 and ⇐·, ·⇒M is an SE(3)-invariant Rie-
mannian metric onM. We specify the metric

⇐·, ·⇒M = ⇐𝑘 (𝑏,𝑏+1) ·, ·⇒R3𝑃 (11)

by a block-diagonal matrix 𝑘 (𝑏,𝑏+1) ↑ R3𝑌,3𝑌 , with𝑖 blocks of the
form

𝑘 (𝑏,𝑏+1)
𝑍 ! 1

2 (𝑘
𝑏
𝑍 + 𝑘𝑏+1𝑍 ) ↑ R3,3,

which are assembled from symmetric and positive de!nite local
metric tensors 𝑘𝑏𝑍 ↑ R3,3 associated to each vertex 𝑅 𝑏𝑍 .

Fig. 13. A schematic overview of the time and space discretization of a li$ 𝑂 .
The tangent vectors (white) are the preferred displacement directions of 𝑂 𝐿𝑄
resp. 𝑂 𝐿+1𝑄 (red) with respect to the local dissipation metric Equation 13. By

measuring the dissipation caused by displacements ε𝑂 (𝐿,𝐿+1)
𝑄 in each time

step (grey shaded area), these local dissipation energies are aggregated into
a total dissipation energy over the shape sequence.

Physical model parameters. The choice of local metric tensors deter-
mines the physical scenario that is modeled. For example, blocks of
the form

𝑘𝑏𝑍 =𝑖 𝑍 𝑙 (12)

model the kinetic energy of a shape-changing body with masses
𝑖 𝑍 > 0 lumped at its vertex positions. For all experiments involving
isotropic local metric tensors, we assign unit mass to each vertex,
allowing the mass distribution to be directly inferred from the vertex
distribution.
Following resistive force theory [Gray and Hancock 1955; Zhang

and Goldman 2014], we approximate the total dissipation based
on velocity and tangential drag on individual body elements, thus
neglecting global interactions. To account for e"ects of dissipative

anisotropies that, e.g., a swimmer immersed in a viscous medium
experiences, we assign a unit vector to each vertex. These vectors
are determined solely by the geometry of the shapes. Speci!cally,
for curves, we assign a unit tangent vector 𝑃 𝑏

𝑍 ↑ S2 and de!ne

𝑘𝑏𝑍 = 𝑔𝑏
𝑍 (𝑙 + (𝑚 ↖ 1)𝑃 𝑏

𝑍 ∈ 𝑃 𝑏
𝑍 ) ↑ R3,3, (13)

with integration weights 𝑔𝑏
𝑍 > 0 and anisotropy ratio 𝑚 ↑ (0, 1],

which models the relative ease of the displacement of a vertex of a
polygonal curve in the direction of the tangent vector. Analogously,
for surfaces, we assign a unit normal vector 𝑛 𝑏

𝑍 ↑ S2 to each vertex
𝑅 𝑏𝑍 and de!ne

𝑘𝑏𝑍 = 𝑔𝑏
𝑍 (𝑚𝑙 + (1 ↖ 𝑚)𝑛 𝑏

𝑍 ∈ 𝑛 𝑏
𝑍 ) ↑ R3,3 . (14)

With this approach, all bodies—including snakes slithering on the
ground—are formally modeled as if fully immersed in a viscous
medium. While this is a signi!cant simpli!cation, it proves e"ective
in practice, even for capturing the essential characteristics of slither-
ing locomotion. For dissipation-dominated scenarios, we determined
the weights𝑔𝑏

𝑍 proportional to the size of the Voronoi cell around
each vertex. Typical choices for the anisotropy parameter were
𝑚 = 0.1 for curve-based examples and 𝑚 ↑ [0.001, 0.01] for surface
meshes.
The choice of a Riemannian metric on the total space according

to Equation 13 and Equation 14 allows for the modeling of a wide
range of physical scenarios [Gross et al. 2023]. An overview of all
physical model parameters used in our experiments is provided
in Table 1.

Integrating shapes into motion. Together with the input shapes and
an initial momentum 𝑎0, the physical model parameters uniquely de-
termine motion trajectories up to a global rigid body transformation.
Therefore, there is a unique horizontal lift with 𝑀0 = Id ↑ SE(3),
integrating the shape sequence starting from the position of the !rst
shape in the common reference frame.

Analogous to the continuous setup, this lift is determined by the
condition that the discrete momentum

𝑎 (𝑅 𝑏↖1, 𝑅 𝑏 ) ϑ &'
(
↖ 1
2
∑
𝑉 𝑅

𝑏
𝑍 ↗

(
𝑘𝑏↖1𝑍 ε𝑅 (𝑏↖1,𝑏 )

𝑉

)
+ 𝑅 𝑏↖1𝑍 ↗

(
𝑘𝑏𝑍ε𝑅

(𝑏↖1,𝑏 )
𝑍

)
↖∑

𝑉 𝑘
(𝑏↖1,𝑏 )
𝑍 ε𝑅 (𝑏↖1,𝑏 )𝑍

,-
.

(15)

of the lift 𝑅 vanishes at each time step. Given two consecutive shapes,
this can in practice be achieved by solving for roots of

SE(3) → R6, 𝑀𝑏 ↓→ 𝑎 (𝑅 𝑏↖1,𝑀𝑏 (𝑆𝑏 )) ↖ 𝑎0, (16)

where 𝑎0 ↑ R6 represents an initial momentum (Algorithm 1). By
construction, such variational integrators exhibit a number of ad-
vantageous properties as they are automatically symplectic, exhibit
good energy behavior for exponentially long times and are mo-
mentum preserving [Marsden and West 2001; Leok 2015], making
them highly e"ective for computing stable trajectories. All our ex-
periments assume the bodies to be initially at rest, which implies
𝑎0 ↙ 0.
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Fig. 14. Optimization of a stingray’s gait. Deformations of the stingray’s body are constrained to a reduced linear modal basis composed of the first 40
vibrational modes of a membrane energy with modulated sti"ness as color-coded. The stingray must achieve a net curved trajectory in the most e"icient
manner as measured by a combination of the membrane energy and the total energy dissipation (Equation 10). The optimized cyclic gait is repeated 7 times and
exhibits a natural swimming behavior. See video at 03:24.

Algorithm 1 — IntegrateTrajectory [Gross et al. 2023]

Input: shape sequence 𝑆 ↑ S𝑎 , metric tensors (𝑘1, . . . ,𝑘𝑎), initial
momentum 𝑎0 ↑ R6

Output: horizontal section 𝑅 ↑ M𝑎

1: 𝑅 1 ∋ Id(𝑆1)
2: for 𝑈 = 2, . . . ,𝑜 do
3: 𝑀𝑏 ∋ solve 𝑎 (𝑅 𝑏↖1,𝑀𝑏 (𝑆𝑏 )) ↖ 𝑎0 = 0 𝐿 Equation 16
4: 𝑅 𝑏 ∋ 𝑀𝑏 (𝑆𝑏 )
5: end for

4.2 Optimization algorithm
In order to solve inverse problems as in Equation 4, we must compute
the derivatives of a generic objective function J with respect to the
input shapes 𝑆 . We consider the physical model parameters to be
!xed, which still leaves us with the discrete shape sequence—and a
total of 3𝑜𝑖 degrees of freedom—as variables.

T!"#$"% 4.1. Let 𝑅 ↑ M𝑎 be a discrete curve in the con"gura-
tion space M and J : M𝑎 → R∝0 be a generic objective function
(Equation 3). Then, for 𝑝 ↑ {1, . . . ,𝑜},

𝑋J
𝑋𝑆𝑏

= 𝑔∞
𝑏+1

𝑞𝑎 (𝑏,𝑏+1)
𝑞𝑆𝑏

+𝑔∞
𝑏

𝑞𝑎 (𝑏↖1,𝑏 )
𝑞𝑆𝑏

+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏
, (17)

where the adjoint vectors𝑔1, . . . ,𝑔𝑎 ↑ R6 are given by(
𝑞𝑎 (𝑎↖1,𝑎)

𝑞𝑀𝑎

∞
𝑔𝑎 = ↖

(
𝑞J
𝑞𝑀𝑎

∞
, (18)

respectively, the recursively de"ned linear systems for 𝑝 ↑ {𝑜↖1, . . . , 1},(
𝑞𝑎 (𝑏↖1,𝑏 )

𝑞𝑀𝑏

∞
𝑔𝑏 = ↖

(
𝑞𝑎 (𝑏,𝑏+1)

𝑞𝑀𝑏

∞
𝑔𝑏+1 ↖

(
𝑞J
𝑞𝑀𝑏

∞
. (19)

P$##&. See Appendix A. ↭

Note that, due to the explicit use of con!guration space symme-
tries, the resulting form of our governing ODE—and consequently
the de!nition of the adjoint vectors—di"ers from those presented in,
e.g., Bordalba et al. [2023], Coros et al. [2012], or Pan and Manocha
[2018]. Theorem 4.1 allows us to e$ciently compute the gradient of

the objective function with respect to the input shapes 𝑆 in Equa-
tion 17 by solving a sequence of 6 ↗ 6 linear systems in Equation 18
and Equation 19. Initial shape sequences are updated according to an
L-BFGS algorithm [Byrd et al. 1995] until su$ciently small relative
variations in the objective are observed, or when the gradient norm
is lower than a prescribed threshold4. We summarize our complete
optimization in Algorithm 2.

To employ this type of quasi-Newton method, the objective J for
the minimization is ideally required to be a 𝑟2 function. However,
in practice our method complies with functions which are merely in
𝑟2 almost everywhere (see, e.g., Figure 1). The optimization timings
and associated experimental settings can be found in Table 1.

Algorithm 2 — OptimizeShapeSequence
Input: objective J : M𝑎 → R∝0, initial guess 𝑆 ↑ S𝑎

Output: optimal shape sequence 𝑆⇔ ↑ S𝑎

1: while not Converged(J (𝑆)) do
2: 𝑅 ∋ IntegrateTrajectory(𝑆) 𝐿 Algorithm 1

3: L𝑎, r𝑎 ∋
(
𝑐𝑑 (𝑅↖1,𝑅)

𝑐𝐿𝑅

)∞
,↖

(
𝑐J
𝑐𝐿𝑅

)∞
4: 𝑔𝑎 ∋ Solve(L𝑎𝑔𝑎 = r𝑎) 𝐿 Equation 18
5: 𝑅J

𝑅𝑃𝑅 ∋ 𝑔∞
𝑎

𝑐𝑑 (𝑅↖1,𝑅)
𝑐𝑃𝑅 + 𝑐J

𝑐𝑂𝑅
𝑐𝑂𝑅

𝑐𝑃𝑅 𝐿 Equation 17
6: for 𝑝 = 𝑜 ↖ 1, . . . , 1 do
7: L𝑏 , r𝑏 ∋

(
𝑐𝑑 (𝐿↖1,𝐿 )

𝑐𝐿𝐿

)∞
,↖

(
𝑐𝑑 (𝐿,𝐿+1)

𝑐𝐿𝐿

)∞
𝑔𝑏+1 ↖

(
𝑐J
𝑐𝐿𝐿

)∞
8: 𝑔𝑏 ∋ Solve(L𝑏𝑔𝑏 = r𝑏 ) 𝐿 Equation 19
9: 𝑅J

𝑅𝑃𝐿 ∋ 𝑔∞
𝑏+1

𝑐𝑑 (𝐿,𝐿+1)
𝑐𝑃𝐿 +𝑔∞

𝑏
𝑐𝑑 (𝐿↖1,𝐿 )

𝑐𝑃𝐿 + 𝑐J
𝑐𝑂 𝐿

𝑐𝑂 𝐿

𝑐𝑃𝐿 𝐿

Equation 17
10: end for
11: d ∋ L-BFGS

(
𝑆, 𝑅J𝑅𝑃

)
𝐿 descent direction

12: 𝑆𝑏 ∋ Linesearch (J , 𝑆, d)
13: end while

The stability of our inverse optimization algorithm crucially de-
pends on the accuracy of the derivatives of the objective function,

4We refer to the accompanying code for details.
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which requires exactly solving the root-!nding problem in Equa-
tion 16. We found rigidly registering the sequence of input shapes
𝑆 to a common reference object (Figures 1, 8, 9, 12, 18, 21, 20) reli-
ably leads the optimization to terminate at a local minimum. Other
shape spaces naturally rule out rigid transformation and supply
a canonical frame of reference such as the vibrational modes of a
membrane (Figure 14) or SE(3)-equivariant deformations (Figure 2,
Figure 11, Figure 16, Figure 19), which performed equally well in
our experiments.

4.3 Reducing the degrees of freedom
The number of degrees of freedom for a simulation with Algorithm 2
is generally large, which often makes inverse problems ill-posed (see,
e.g., the left most columns of Figure 12 or Figure 20). In this section,
we describe two approaches to mitigate this issue and drastically
reduce the number of degrees of freedom for inverse problems.

Discrete reduced shape spaces. Given a discrete shape space S, we
parametrize a discrete reduced shape space by a di"erentiable map
𝑐 : P → S, where P ↔ R𝑊 is a low-dimensional parameter space
(Figure 10). The corresponding inverse problems then take the form
in Equation 8 and we default to PyTorch’s reverse mode automatic
di"erentiation [Paszke et al. 2019] to account for the additional
concatenation with 𝑐 for the gradient computation in Algorithm 2.

As discussed in Section 3.2, a reduced shape space not only signif-
icantly lowers the number of degrees of freedom whenever 𝑠 △ 3𝑛 ,
but also acts as a regularization that can encode important shape
deformation semantics (Figure 12).

Space-time interpolations. We navigate the con!guration space lever-
aging its !bered structure. The global positioning of a deforming
object emerges from the conservation of geometric momentum.
Therefore, our approach contrasts with methods where trajectories
are traced in con!guration space directly [Pan and Manocha 2018].

Assuming fairly smooth temporal shape transitions, we can rep-
resent a shape sequence in the discrete reduced shape space 𝑐 (P)
using fewer interpolating shapes (see also, e.g., [Heeren et al. 2016]).
Consequently, we view the discrete shape sequence 𝑐 (𝑑) ↑ 𝑐 (P)𝑎
as a sampling of a continuous map 𝑐 ↘ 𝑑 : [0,𝑃 ] → 𝑐 (P) coming

Fig. 15. Splines allow for a continuous description of shape sequences
𝑃 : [0,𝑁 ] → S with few degrees of freedom and can be sampled to obtain
corresponding discrete sequences 𝑃 ↑ S𝑅 .

Fig. 16. With two degrees of freedom, the Purcell’s swimmer (top le!) is the
simplest model of a swimmer that can achieve a net displacement by means
of periodic shape sequences, or “gaits”. The optimal displacement gait found
by our method closely resembles the known optimal solution by Tam and
Hosoi [2007] (top right). We show the displacement of the center edge for
five gait cycles (bo"om). See video at 03:40.

from a sampling map (Figure 15)

s : ( [0,𝑃 ] → S) → {1, . . . ,𝑜} ↗ S " S𝑎, 𝑆 ↓→ (𝑆1, . . . , 𝑆𝑁 ).

We parameterize the underlying continuous section as an interpo-
lating spline with interpolating shapes (𝑐 (𝑑1), . . . ,𝑐 (𝑑𝑈 )), where
(𝑑1, . . . , 𝑑𝑈 ) ↑ P𝑈 are control points. These control points serve as
design variables for the inverse problem, which reads

argmin
𝑋↑P𝑆

J (𝑅 ) s.t. H(s(𝑐 ↘ 𝑑)) = 𝑅 ,

where we use the short-hand notation introduced in Section 4.1.
The map 𝑑 : [0,𝑃 ] → P is a cubic spline interpolating the control
points 𝑑1, . . . , 𝑑𝑈 ↑ P.

In practice, we use the di"erentiable cubic spline implementation
provided by [Kidger 2017], which can be combined with PyTorch’s
reversemode automatic di"erentiation to backpropagate the gradient
through the interpolation operation. This approach allows reducing
the number of degrees of freedom in all our presented experiments,
while enabling to solve for smooth closed gaits.

By construction, our setup ensures that the equations of motion
are satis!ed at every timestep thanks to the condition of geometric
momentum preservation. Other methods often only weakly enforce
the equations of motions using soft penalty terms [Pan and Manocha
2018], or enforce them at a discrete set of timesteps called colloca-
tion points in collocation methods [Bordalba et al. 2023], with no
guarantees for the intervals in between.
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Fig. 17. E"ect of the resolution of our space-time discretization on a shape
parameterized by the serpenoid function. The red and checkered flags
indicate the start position and desired target position, respectively. The red
curve shows the resulting net displacement of the shape’s centroid, with the
cross denoting the final achieved position. See video at 04:03.

5 RESULTS
In this section, we analyze and validate our computational pipeline,
before presenting several example applications focusing on both the
exploration and the optimization of shape sequences and gaits. We
also discuss limitations of our approach and suggest directions for
future work.

5.1 Performance, validation, and consistency
All presented experiments were computed with our Python imple-
mentation, which is available for download at [link withheld during
anonymous review]. Performance statistics computed on an Apple
Macbook Pro with a M1 Max CPU are given in Table 1.
As analytical results on optimal gait strategies of geometric lo-

comotors are generally scarce, we resort to the simplest5 model,
Purcell’s swimmer, that can achieve a net displacement by means of

5Although the model for two scallops on a stick in Figure 2 (also known as the sym-
metrized cousin of Purcell’s swimmer [Kadam and Banavar 2016]) also relies on merely
two degrees of freedom, this model consists of more edges than Purcell’s swimmer.

periodic shape sequences to validate our optimization algorithm.
The optimal displacement gait found by our method closely resem-
bles the known optimal solution by Tam and Hosoi [2007] while
achieving 99.7% of the displacement (Figure 16).
Figure 17 summarizes the e"ects of the space-time discretiza-

tion on the optimization results, illustrating a trade-o" between
computational e$ciency and accuracy of the optimized motion
sequence.

Notably, the energy dissipation rates of optimal trajectories regu-
larized by the variational energy Equation 10 are almost constant,
hinting at the fact that our optimization not only by construction
returns lifts tangent to the horizontal distributions, but in fact
closely approximates subriemannian geodesics—locally shortest lifts
among all lifts tangent to the horizontal distribution—in the con-
!guration spaceM equipped with the dissipation metric given in
Equation 11 [Montgomery 2002]. Natural dynamical systems can
ubiquitously be described as geodesics [Frankel 2011] and, as shown
in Figures 1, 14, 18 and 19, for our applications as well, motion
trajectories regularized this way exhibit a natural look and feel.

5.2 Motion exploration and discovery
A key bene!t of our inverse approach is that we can e"ectively dis-
cover locomotion strategies when only provided with a deformation
shape space. Figure 11 illustrates how we can discover gaits that
displace an abstract locomotor with three degrees of freedom in
di"erent ways. These motions were initialized with small random
perturbations of the constant initial state to break symmetry and
thus generated e"ectively “from nothing.”

This ability is particularly bene!cial in applications such as robot-
ics, where motion systems can be explored solely through knowledge
of kinematic properties. As demonstrated in Figure 18, we can explore
gaits of a snake-like robot and automatically adapt pose sequences
to account for unforeseen events, such as a broken joint segment.
Our method also allows for gait adaptation based on di"erent

constraints on the shape space, such as symmetries. In Figure 2,
our optimization successfully exploits collaborative e"orts, without
which no net displacement is possible. However, when comparing
the two scallops on a stick in Figure 2 to the swimming robot in
Figure 19 with similar morphology, we note that having four degrees
of freedom signi!cantly increases its maneuverability, allowing the
displacement along a curved trajectory.
The ability to explore and discover locomotion strategies is not

limited to kinematic systems, but also carries over to, e.g., reduced
shape spaces, which we demonstrate in the studies shown in Fig-
ures 12 and 20, eventually allowing for more complex animation
tasks. Although a stingray’s locomotion in water is a corner case
for the strict applicability of geometric locomotion, our algorithm
managed to discover a realistically looking periodic shape sequence
mainly concentrated around the animals pectoral !ns, which yields a
curved trajectory (Figure 14). The optimization was performed on a
reduced shape space spanned by 40 vibrational modes of a membrane
energy with modulated sti"ness as described in Section 3.2. This
animation task combines methods from Figures 12 and 20 as well as
Figures 10 and 15.
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Fig. 18. Motion trajectories of a snake-like robot slithering to a predetermined target position are compared to trajectories obtained with an additional
regularization by the total energy dissipation. While the robot in the first and second column can freely move all its hinge segments, admissible shapes of the
robot in the third and fourth column are limited by a broken hinge segment which remains in a position with a fixed angle of 𝑇/4. The graph on the right depicts
energy dissipation over time. See video at 04:41.

5.3 Shape sequence and gait optimization
A particularly suitable application for our approach is the opti-
mization of given gaits or shape sequences to better satisfy their
motion objectives. For example, our approximation of the optimal
gait of Purcell’s swimmer (Figure 16) was initialized with a naive
circular gait, before our method successfully optimized it to closely
approximate its known maximal displacement gait (Section 5.1).
Similarly, Figure 21 shows a skeleton-based animation of an

Armadillo astronaut in an inertia dominated zero-gravity scenario,
which was reproduced from [Gross et al. 2023]. While maintaining
similar motion semantics, our optimization increased the amount of
rotation achieved in a single gait cycle by a factor of !ve. However,
since the approach is agnostic of physical poses, the optimization
can be pushed beyond the physically possible, which can eventually
lead to non-realistic behavior such as self-intersections.

5.4 Manipulation and constraints
Avoiding non-realistic behavior typically requires an appropriate
choice of reduced shape space, taking into account the semantics of

Fig. 19. An abstract robot in a highly damped environment employing its
four degrees of freedom to perform an asymmetric swimming gait to achieve
displacement and rotation along a curved trajectory. See video at 05:32.

physical motion [Loper et al. 2023; Sassen et al. 2024]. However, the
variety of objectives introduced in Section 3.1 can already act as
e"ective regularizations, allowing us to manipulate motion trajecto-
ries either provided by an animator or initially obtained through
automatic motion discovery (Section 5.2). For example, objectives of
the form of Equation 6 cause the trajectory to pass through certain
waypoints (Figure 1), while objectives such as in Equation 7 cause it
to conform to certain semantics designed by an animator (Figure 9).
Figure 8 shows how a snake adapts its gait to achieve a half-turn
while satisfying environmental constraints materialized by a box.

So far we have disregarded how the shape changes are realized in
practice. In robotic applications, where battery power is at a pre-
mium and force or torque constraints must be met, the e$ciency of
locomotion strategies is of particular importance. Similar principles
apply when modeling a shape-changing body in a highly damped
environment, such as a snake slithering on sand. Not only does its
displacement through the granular medium dissipate energy, but
also its metabolism consumes energy to perform the deformations.
A common approach to account for these notions of internal

energy dissipation in the absence of motions is to associate phys-
ical properties such as elasticity with shape-changing characters.
Geodesics in shape spaces with respect to a Riemannian metric have
been successfully computed in the context of shape deformation and
character animation [Heeren et al. 2014, 2016; Sassen et al. 2024],
based on an elastic membrane energy. Notably, Hartwig et al. [2025]
propose a choice of Riemannian metric on the con!guration space
that intrinsically captures both inner and outer energy dissipation.
We demonstrate how an additional regularization with an elastic
membrane energy can be applied in the present setup to e"ectively
bias the optimization result (Figure 20). Moreover, in Figure 18,
we illustrate how an additional regularization with Equation 10
can signi!cantly reduce the total energy dissipated by a snake-like
robot—even when admissible deformations are hindered by a broken
hinge.
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Fig. 20. Di"erent constraints and regularizations allow for the exploration of a variety of gaits which all lead to the discs’ displacement by one diameter. For the
depicted motion trajectories the degrees of freedom are given by the vertex coordinates, while the optimization was run with no constraints, an isometry
constraint and regularizations by a membrane energy using di"erent bending sti"ness distributions (from le! to right). See video at 05:56.

5.5 Limitations and future work
We have demonstrated the e"ectiveness of our inverse geometric
locomotion algorithm on a diverse set of examples and applications.
However, our approach still has a number of limitations.
First, building on the framework of Gross et al. [2023], the pro-

posed approach inherits the same bene!ts and limitations, such as
neglecting the dynamics of participating media. As an example of ne-
glected phenomena, vortices that naturally form in water and air are,
in many ways, essential for e$cient aquatic and aerial locomotion
in high Reynolds number regimes.
Moreover, our treatment of constraints in terms of soft penalty

terms generally leads to trade-o"s between di"erent components of
the objective, thus potentially allowing for small violations of, e.g.,
collision constraints (see, e.g., the bottom right in Figure 8). Addi-
tionally, as with all highly nonlinear problems, there is a possibility

Fig. 21. A naive turning gait of an armadillo astronaut reproduced
form [Gross et al. 2023] (top row) is compared to a gait optimized by our
method (middle row), showing possible performance di"erences despite
visual similarity. Unrealistic behavior, i.e., configurations that exhibit self-
intersections or defy expected motion semantics may occur when the target
rotation goal is set too high (bo"om row). See video at 06:58.

that our optimization gets stuck in a local minimum that fails to
satisfy the motion objective (Figure 22).

In these cases, it is typically impossible to tell if the optimization
failed because of an unrealistic target objective with no feasible
solution, or if modeling choices, such as reduced shape space or the
design of a penalty term, are too restricting (see, e.g., Figure 17).

In general, the choice of an appropriate shape space parameteri-
zation remains a challenging task. A shape space parameterization
needs to be su$ciently expressive to allow for a solution to ex-
ist. However, too many degrees of freedom may destabilize the
optimization and lead to sub-optimal termination. For example,
in Figure 22 we explore the in#uence of di"erent bound constraints
on the wavelength for the serpenoid shape space (Section 3.2) on the
convergence of our optimization for Figure 1. To mitigate trade-o"s
introduced by regularizing the shape space and/or enforcing seman-
tics by means of soft constraints, a promising avenue for future
work is to extend our method by incorporating semantic constraints
for, e.g., collision avoidance directly in the shape spaces as in [Loper
et al. 2023; Sassen et al. 2024].

Fig. 22. The values of the objective function over time steps of the opti-
mization of the experiment shown in Figure 1 by our method (le!) and the
corresponding values of the wavelength parameters (right) are displayed
for three di"erent experiments, which are distinguished by constraints on
the wavelengths parameter (red: constant, green: bound constraints, blue:
unconstrained). Notably, bounds that are too restrictive or too permissive
may lead to sub-optimal convergence of the optimization. The result of the
green graphs is displayed in Figure 1.
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In our current setting, we optimize for shape deformations, but
assume that the corresponding morphology, i.e., the rest shape
of the moving body is given as input. Fascinating questions arise
on how to formulate a co-optimization that simultaneously !nds
optimal morphologies and pose sequences to best achieve given
target objectives (see, e.g., [Wampler and Popovi& 2009]). Such a
method could potentially aid studies in evolutionary biology as well
as support robotic designs with new motion capabilities.

6 CONCLUSION
We present an e$cient computational framework for addressing a
wide range of inverse geometric locomotion problems. Our method
serves as both a powerful animation tool and a versatile system
for exploring locomotion strategies in shape-changing bodies, as
demonstrated through a diverse set of examples. It provides users
with intuitive controls to design and manipulate motion trajectories
for animation, while in robotics it facilitates the discovery and opti-
mization of gaits and enables the simulation and analysis of potential
failure scenarios, thereby enhancing robustness and reliability.
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Table 1. Experimental data of the gait optimizations (from le! to right): Anisotropy ratio 𝑒 , whether the optimized gait is periodic, number of timesteps in the
simulation, number of vertices of the shape, number of control points in the spline representation, number of reduced degrees of freedom, and the time it took
to optimize the shape sequence. If multiple values are provided, the order follows experiments from le$ to right then top to bo!om of the corresponding figure.

Exp. (Figure) 𝑚 closed gait #timesteps #vertices #CPs #DOFs optim. time (min:sec)
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A PROOF OF THEOREM 4.1
We start out by proving a lemma, which provides us with some
helpful identities. For brevity, we will use the notation 𝑎 (𝑏↖1,𝑏 ) ϑ
𝑎 (𝑅 𝑏↖1, 𝑅 𝑏 ).
L"%%’ 1. It holds

𝑋𝑀𝑄
𝑋𝑆𝑏

= ↖
(
𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄

↖1 ( 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑆𝑏
+ 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄↖1

𝑋𝑀𝑄↖1
𝑋𝑆𝑏


.

P$##&. Since solutions of the forward problem are character-
ized by a constant 𝑎 (𝑂↖1,𝑂 ) ((𝑆𝑄↖1,𝑀𝑄↖1 (𝑆𝑄↖1)), (𝑆𝑄 ,𝑀𝑄 (𝑆𝑄 ))), we can
di"erentiate to obtain

0 =
𝑋𝑎 (𝑂↖1,𝑂 )

𝑋𝑆𝑏
=

𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑆𝑏
+ 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄↖1

𝑋𝑀𝑄↖1
𝑋𝑆𝑏

+ 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏

,

which yields the claim after re-arranging the terms. ↭

C#$#((’$) 1. In the setup of Lemma 1, we obtain following simpli-
"ed special cases:

(1) When 2 ′ 𝑈 ′ 𝑜 and 𝑝 = 𝑈 ↖ 1, it holds

𝑋𝑀𝑄
𝑋𝑆𝑄↖1

= ↖
(
𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄

↖1 ( 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑆𝑄↖1
+ 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄↖1

𝑋𝑀𝑄↖1
𝑋𝑆𝑄↖1


. (20)

(2) When 1 ′ 𝑈 ′ 𝑜 and 𝑝 = 𝑈 , it holds

𝑋𝑀𝑄
𝑋𝑆𝑄

= ↖
(
𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄

↖1 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑆𝑄
. (21)

(3) When 𝑈 = 1 and 𝑝 = 0, it holds

𝑋𝑀1
𝑋𝑆0

= ↖
( 𝑞𝑎 (0,1)

𝑞𝑀1

↖1 𝑞𝑎 (0,1)

𝑞𝑆0
. (22)

(4) When 2 ′ 𝑈 ′ 𝑜 and 0 ′ 𝑝 ′ 𝑈 ↖ 2, it holds

𝑋𝑀𝑄
𝑋𝑆𝑏

= ↖
(
𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄

↖1 𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄↖1

𝑋𝑀𝑄↖1
𝑋𝑆𝑏

. (23)

L"%%’ 2. With the vectors 𝑔1, . . . ,𝑔𝑎 ↑ R6 de"ned as in Theo-
rem 4.1, it holds

𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑎

= 𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑆𝑎
,

𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑎↖1

= 𝑔∞
𝑎

( 𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑆𝑎↖1
+
𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎↖1

𝑋𝑀𝑎↖1
𝑋𝑆𝑎↖1


,

𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑏

= 𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎↖1

𝑋𝑀𝑎↖1
𝑋𝑆𝑏

for 𝑝 ↑ {0, . . . ,𝑜 ↖ 2},

and, for 𝑝 ↑ {0, . . . ,𝑜 ↖ 2},(
𝑔∞
𝑏+2

𝑞𝑎 (𝐿+1,𝐿+2)

𝑞𝑀𝑏+1
+ 𝑞J
𝑞𝑀𝑏+1


𝑋𝑀𝑏+1
𝑋𝑆𝑏

= 𝑔∞
𝑏+1

( 𝑞𝑎 (𝐿,𝐿+1)

𝑞𝑆𝑏
+
𝑞𝑎 (𝐿,𝐿+1)

𝑞𝑀𝑏

𝑋𝑀𝑏
𝑋𝑆𝑏


,

and, for all 𝑈 ↑ {2, . . . ,𝑜 ↖ 1} and 𝑝 ↑ {0, . . . , 𝑈 ↖ 2},(
𝑔∞
𝑄+1

𝑞𝑎 (𝑂 ,𝑂+1)

𝑞𝑀𝑄
+ 𝑞J
𝑞𝑀𝑄


𝑋𝑀𝑄
𝑋𝑆𝑏

= 𝑔∞
𝑄
𝑞𝑎 (𝑂↖1,𝑂 )

𝑞𝑀𝑄↖1

𝑋𝑀𝑄↖1
𝑋𝑆𝑏

.

P$##&. All three equations immediately follow from plugging in
the results from Cor. 1 for 𝑅𝐿𝑅

𝑅𝑃𝐿 resp. 𝑅𝐿𝑂𝑅𝑃𝐿 and the de!nition of the
adjoint vectors𝑔1, . . . ,𝑔𝑎 ↑ R6. ↭

With these formulas in place, we are now in a position to prove
Theorem 4.1.

P$##& #& T!"#$"% 4.1. We consider an objective function of
the form J (𝑅 ), where 𝑅 = (𝑅 1, . . . , 𝑅𝑎) with 𝑅 𝑏 (𝑀𝑏 (𝑆𝑏 ), 𝑆𝑏 ) for each
𝑝 ↑ {1, . . . ,𝑜}. Its derivative with respect to the 𝑝-th shape is therefore
given by

𝑋J
𝑋𝑆𝑏

=
𝑎∑
𝑄=𝑏

𝑞J
𝑞𝑅 𝑄

𝑋𝑅 𝑄

𝑋𝑆𝑏
=

𝑎∑
𝑄=𝑏

(
𝑞J
𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏

+ 𝑞J
𝑞𝑅 𝑄

𝑞𝑅 𝑄

𝑞𝑆𝑏


.

Notably, for each summand with 𝑡 ϖ 𝑝 , the term 𝑐𝑂𝑈

𝑐𝑃𝐿 vanishes, since

by de!nition 𝑅𝑉 (𝑀𝑉 (𝑆𝑉 ), 𝑆𝑉 ). Therefore, by recursively applying the
identities of Lemma 2, when 𝑝 ↑ {1, . . . ,𝑜 ↖ 2}, we !nd

𝑋J
𝑋𝑆𝑏

=
𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑏

+
𝑎↖1∑
𝑄=𝑏

(
𝑞J
𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏


+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

= 𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎↖1

𝑋𝑀𝑎↖1
𝑋𝑆𝑏

+
𝑎↖1∑
𝑄=𝑏

(
𝑞J
𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏


+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

=
(
𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎↖1
+ 𝑞J
𝑞𝑀𝑎↖1


𝑋𝑀𝑎↖1
𝑋𝑆𝑏

+
𝑎↖2∑
𝑄=𝑏

(
𝑞J
𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏


+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

= 𝑔∞
𝑎↖1

𝑞𝑎 (𝑅↖2,𝑅↖1)

𝑞𝑀𝑎↖2

𝑋𝑀𝑎↖2
𝑋𝑆𝑏

+
𝑎↖2∑
𝑄=𝑏

(
𝑞J
𝑞𝑀𝑄

𝑋𝑀𝑄
𝑋𝑆𝑏


+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

...

=
(
𝑔∞
𝑏+2

𝑞𝑎 (𝐿+2,𝐿+1)

𝑞𝑀𝑏+1
+ 𝑞J
𝑞𝑀𝑏+1


𝑋𝑀𝑏+1
𝑋𝑆𝑏

+ 𝑞J
𝑞𝑀𝑏

𝑋𝑀𝑏
𝑋𝑆𝑏

+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

= 𝑔∞
𝑏+1

𝑞𝑎 (𝐿,𝐿+1)

𝑞𝑆𝑏
+
(
𝑔∞
𝑏+1

𝑞𝑎 (𝐿,𝐿+1)

𝑞𝑀𝑏
+ 𝑞J

𝑞𝑀𝑏


𝑋𝑀𝑏
𝑋𝑆𝑏

+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏

= 𝑔∞
𝑏+1

𝑞𝑎 (𝐿,𝐿+1)

𝑞𝑆𝑏
+𝑔∞

𝑏

𝑞𝑎 (𝐿↖1,𝐿 )

𝑞𝑆𝑏
+ 𝑞J
𝑞𝑅 𝑏

𝑞𝑅 𝑏

𝑞𝑆𝑏
.

For the remaining cases, we !nd

𝑋J
𝑋𝑆𝑎

=
𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑎

+ 𝑞J
𝑞𝑅𝑎

𝑞𝑅𝑎

𝑞𝑆𝑎
= 𝑔∞

𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎
+ 𝑞J
𝑞𝑅𝑎

𝑞𝑅𝑎

𝑞𝑆𝑎
,

𝑋J
𝑋𝑆𝑎↖1

=
𝑞J
𝑞𝑀𝑎

𝑋𝑀𝑎
𝑋𝑆𝑎↖1

+ 𝑞J
𝑞𝑀𝑎↖1

𝑋𝑀𝑎↖1
𝑋𝑆𝑎↖1

+ 𝑞J
𝑞𝑅𝑎↖1

𝑞𝑅𝑎↖1

𝑞𝑆𝑎↖1

= 𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑆𝑎↖1
+
(
𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑀𝑎↖1
+ 𝑞J
𝑞𝑀𝑎↖1


𝑋𝑀𝑎↖1
𝑋𝑆𝑎↖1

+ 𝑞J
𝑞𝑅𝑎↖1

𝑞𝑅𝑎↖1

𝑞𝑆𝑎↖1

= 𝑔∞
𝑎

𝑞𝑎 (𝑅↖1,𝑅)

𝑞𝑆𝑎↖1
+𝑔∞

𝑎↖1
𝑞𝑎 (𝑅↖2,𝑅↖1)

𝑞𝑆𝑎↖1
+ 𝑞J
𝑞𝑅𝑎↖1

𝑞𝑅𝑎↖1

𝑞𝑆𝑎↖1
,

𝑋J
𝑋𝑆0

=
(
𝑔∞
2
𝑞𝑎 (1,2)

𝑞𝑀1
+ 𝑞J
𝑞𝑀1


𝑋𝑀1
𝑋𝑆0

+ 𝑞J
𝑞𝑅 0

𝑞𝑅 0

𝑞𝑆0

= 𝑔∞
1
𝑞𝑎 (0,1)

𝑞𝑆0
+ 𝑞J
𝑞𝑅 0

𝑞𝑅 0

𝑞𝑆0
,

where the last identity follows from the same steps as the general
case and the fact that 𝑅 0 is !xed.

↭
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