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Abstract

We present a Lagrangian method for the computation of ideal plasma knots and links. It is based on a variational prin-
ciple for stable equilibria of an ideal plasma in the case of a free boundary subjected to external magnetic or plasma
pressure forces. For this purpose, we introduce a structure preserving discretization of plasma based on decompo-
sitions of Riemannian manifolds representing pressure confined plasma regions in magnetohydrostatic equilibrium.
Moreover, we show that, by the virtue of an analogy, the method can be used for the approximation of steady Euler-
flows of arbitrarily complex topology.
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1. Introduction

The search for “natural” representatives for topologi-
cal spaces is a fundamental task in mathematics. While,
the round sphere is arguably the undisputed representative
for a topological sphere in any dimension, there are no
such obvious candidates for most other cases—not even
in lower dimensions as for curves and surfaces.

A common approach is to resort to energy function-
als that promote desired properties and whose critical
points are therefore good substitutes. Well known ex-
amples are elastic curves, the Plateau problem, mini-
mal surfaces or Willmore surfaces. The corresponding
variational energies—the integrated squared curvature of
plane curves, the area functional or the integrated mean or
squared mean curvature—measure geometric quantities.
Less common examples of such energies, which are used
in the field of knot theory to find optimal geometric con-
figurations of knots and links, or closed surfaces, are the
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Möbius energy [1, 2] or the tangent-point energy [3, 4, 5].
Many functionals are inspired by nature: By assigning

physical properties to mathematical objects, for example
the bending energy is used to model elastic properties of
space curves. The rope length of tight knots [6], is the
minimum length of rope—perfectly hard, perfectly flexi-
ble and with circular cross section of fixed diameter—that
is required to tie a knot of a given type. The center curve
of such a rope can be thought of as yet another “natural”
representation of this knot type. Thus, there are a number
of meaningful motivations that lead to di↵erent “natural”
representatives.

The present paper is motivated by the process of mag-
netic relaxation [7]. That is, we consider an energy that
is usually employed for a variational characterization of
special configurations of magnetic fields in the context of
plasma physics: A magnetic field B is assumed to be in an
ambient fluid with pressure p and governed by the laws
of ideal MHD, i.e., the field lines are “frozen into the
fluid”. The magnetic field B dissipates energy (through
some process) and magnetic tension causes the individual
field lines to shrink, while the magnetic pressure causes
them to evenly distribute (and thus experience some kind
of “magnetic elasticity”). With the field lines frozen into
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the fluid, the topology of the field is preserved through-
out the process and topological obstructions (or confin-
ing ambient pressure) eventually bring the process to a
halt [8, 9, 10, 11].

By a suitable discretization of the plasma into filaments
this physically motivated picture constitutes an energy on
the space of curves with thickness and thus can also be
used for knots and links. A geometric interpretation then
gives rise to a computational method to compute such
equilibrium configurations.

1.1. Computational Methods
As with the Willmore functional or the rope length

problem, precise mathematical statements about minimiz-
ers are generally scarce. Consequently, the development
of numerical methods to approximate or visually repre-
sent such natural representatives has been an active area
of research [12, 13, 14, 5, 4].

Relevant numerical methods for magnetic relaxation
include so called magneto-frictional methods [15, 16,
17, 18, 19, 20]. For surveys on these methods see
e.g., [9], [21] or [22].

In particular, a numerical treatment of magnetic relax-
ation while constraining the topology or allowing for free-
boundaries involves considerable computational di�cul-
ties [23].

The similarity of ideal magnetic relaxation and the
rope length problem—both require an isotopy class pre-
serving tightening process [24]—lead to algorithms from
knot theory [12, 13] being used in the magnetic con-
text to approximate the spectra of knotted flux tubes [25,
26], although additional (geometrically more rigid) as-
sumptions were required which neglect magnetic elas-
ticity. Nonetheless, these Lagrangian methods elegantly
deal with topology preservation and free-boundary con-
ditions. Other methods that have made relevant progress
include [27], [28], [20] and [29].

1.2. Objective
Building on recent work by Padilla et al. [29], we de-

velop and discretize decompositions of Riemannian man-
ifolds representing pressure bounded plasma regions in
general magnetohydrostatic equilibrium. We provide cor-
responding variational principles allowing for free bound-
ary surfaces in the sense of Dixon et al. [23]—including
cases of non-ideal MHD.

Figure 1: A flux tube in the shape of a trefoil knot (left) and a “relaxed
state” of the same knot (right) representing a stationary point of the
magnetohydrostatic energy.

Moreover, we show how the algorithmic framework
provided by Padilla et al. [29] can be extended to com-
pute these more general decompositions. The presented
discretization is structure preserving [30] and, in con-
trast to previous state of the art algorithms, allows for
(time-)variable field strength of the discretized plasma fil-
aments and non-vanishing gas pressure on the support of
the magnetic field. We demonstrate the applicability of
the method on applications proposed by Mo↵att [8, 31].

2. Magnetic Relaxation

With pioneering work by Mo↵att [8, 31], magnetic
relaxation has established itself as an independent area
of research, with influence ranging from plasma physics
and classical fluid dynamics to purely mathematical disci-
plines such as di↵erential geometry, di↵erential topology
and knot theory [32, 33, 34, 35, 10, 7, 36].

2.1. Steady Euler-Flows

Based on the process of ideal magnetic relaxation [8]
formally introduced stationary points that are topologi-
cally accessible from a given field B. For a precise def-
inition of topological accessibility we refer the reader to
Mo↵att’s original work. For now, we can imagine that we
are dealing with a limit of ideal relaxation, which may not
necessarily share the same topology as the original field,
but can experience discontinuities across so called current
sheets (cf. Fig. 5).
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By drawing analogies between magnetic fields and or-
dinary fluids as

B  ! u
curl B  ! !

p  ! h0 � h

where u is the fluid velocity, ! the fluid vorticity, h0 a con-
stant and h the Bernoulli pressure, his result also implies
the existence of a steady Euler-flow that is topologically
accessible from any given Euler-flow of arbitrarily com-
plex topology [9, Sec 3.1].

2.2. The Energy of Knots and Links

Mo↵att [31] proposed another interesting application of
ideal magnetic relaxation in the field of knot theory. He
considered the equilibria of essentially knotted flux tubes
resulting from the process of ideal magnetic relaxation,
and suggested that the spectrum of relaxed state energies
of an essentially knotted flux tube is a topological invari-
ant capturing the complexity of the knot type. Special
cases of the problem were studied by [37], whereas Mag-
gioni and Ricca [25, 26] studied the problem from a ge-
ometric point of view. In particular, Ricca and Maggioni
[38] found similarities between the ground-state energy
spectra of magnetic knots and links and the bending en-
ergy of tight knots and links, both of which are physically
motivated.

Figure 2: Relaxing the Perko pair (insets) is considered to be a bench-
mark for numerical algorithms aiming to find ideal conformations of
prime knots. The respective configurations resulting from our method
are shown side-by-side.

3. Ideal Magnetohydrostatics

In physics, a variety of simplifications are used in the
description of static solutions of ideal MHD. It is known
that the resulting equations are the Euler-Lagrange equa-
tions of corresponding variational principles for the mag-
netic energy which di↵er in the imposed constraints or
boundary conditions. In this section we briefly review
the customary principles, before we extend all cases to
pressure confined free-boundary conditions in the sense
of Dixon et al. [23] in Sec. 5 for the ideal case and Sec. 8.1
for more general cases.

We consider a three-dimensional Riemannian manifold
M with magnetic field B 2 �T M, div B = 0 and pressure
p 2 C1(M). If not stated di↵erently, we assume that the
field is confined by a magnetic surface, i.e., hB,Ni = 0
where N is the normal vector of @M.

In the absence of gravity, a magnetic field B is said to be
in magnetohydrostatic equilibrium if is satisfies the ideal
magnetohydrostatics (MHS) equation

(curl B) ⇥ B = grad p . (1)

When studying strong magnetic fields or fields in a vac-
uum, the low-beta limit can be employed [39], which ne-
glects pressure e↵ects and for which Eq. (1) reduces to the
so called force-free condition

(curl B) ⇥ B = 0 . (2)

Solutions to (2) are referred to as force-free fields, whose
curl is co-linear to the original field, i.e., curl B = � B for
some smooth function � 2 C1(M). If the scalar func-
tion � is constant, the corresponding field is called linear
force-free and another important special case of (linear)
force-free fields is given by harmonic fields which satisfy
curl B = 0.

Distinguished by the imposed boundary conditions and
constraints, the simplifications of Eq. (1) emerge as the
Euler-Lagrange equations of the total potential energy

E(B, p) = B(B) + P(p) (3)

where

B(B) =
1
2

Z

M
|B|2 det and P(p) =

Z

M
p det (4)
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are the magnetic energy respectively the internal energy.
In the process of magnetic relaxation, the field is physi-

cally transported by a perfectly conducting fluid with van-
ishing resistivity. The induction equation of ideal MHD
implies that the field is “frozen” into the fluid, i.e., the
isotopy class of the field B is preserved. Therefore, we
consider variations of the field B of the form

B̊ = curl(Y ⇥ B) , (5)

where Y 2 �T M is the variational vector field of a family
of di↵eomorphisms t 7! 't : M ! M, t 2 (�✏, ✏) on M.

In the low-beta limit, the variational formulation of the
general magnetohydrostatic case (Eq. (1), [40]) is known
as the minimum energy theorem for force-free fields [39,
Sec. 2.8]. In Sec. 8.1 we will also discuss generalized
variational principles for linear force-free and harmonic
fields, which require variations which are incompatible
with ideal MHD and therefore require special treatment.

4. Magnetohydrostatic Bubbles

Ultimately we are interested in equilibrium configura-
tions of magnetic fields which are bound by a flux surface
and confined by an ambient pressure, though the geom-
etry is not held fixed. Eq. (1) states that in magnetohy-
drostatic equilibrium, the pressure is constant along the
field lines of the field B. Moreover, the pressure is con-
stant away from the magnetic field and has jumps across
the bounding flux surface. It is therefore natural to de-
compose the manifold M into the support of the magnetic
field and its complement and consider plasma configura-
tions which restrict to smooth configurations on those re-
gions.

Definition 4.1. A plasma bubble configuration on a Rie-
mannian manifold M consists of a decomposition of M
into finitely many manifolds with corners Mi, M = M0 [
M1 [ · · · [ Mn with M�i \ M�j = ;, divergence-free vec-
tor fields Bi 2 �T Mi tangent to non-empty interfaces
⌃i j B @Mi \ @Mj, 0 < j , i and pressure functions
pi 2 C1(Mi) such that 0  pi|⌃i0 < p0|⌃i0 and dpi(Bi) = 0.
In particular, MB = M1 [ · · · [ Mn.

We define the magnetic field B 2 �T MB of the plasma

Figure 3: An isolated flux tube is an example of a plasma bubble config-
uration.

bubble configuration as

B(x) B

8>><
>>:

Bi(x) if x 2 Mi ,

0 if x 2 M�0
(6)

and similarly the interior pressure pB 2 C1(MB) as

pB(x) B

8>><
>>:

pi(x) if x 2 Mi ,

0 if x 2 M�0 .
(7)

Loosely speaking, a plasma bubble configurations is a de-
composition of M into two regions–a flux domain MB,
which carries the magnetic field and (possibly) some gas,
and a gas domain M0, which contains only gas but no
magnetic field. In Appendix A we prove

Proposition 4.2. The magnetic field of a plasma bubble
configuration is weakly divergence-free.

Remark 4.3. For the special case that pB = 0 vanishes ev-
erywhere such domain decompositions, to which we will
refer to as magnetic bubble configurations, were already
considered by Dixon et al. [23] and Padilla et al. [29].

Such a configuration is called a magnetohydrostatic
configuration if it weakly satisfies the magnetohydrostatic
equation. In Appendix B we proof conditions for when
this is the case and which are summarized in

Theorem 4.4. A plasma bubble configuration p0 > 0,
pB 2 C1(MB), B 2 �T M, weakly satisfies the magnetohy-
drostatic equation if and only if

1. p0 is piecewise constant,
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2. (curl B) ⇥ B = grad pB,
3. p0 = pB + |B|

2

2 on @M0 \ @MB .

In particular, the second condition tells us that the fields
Bi are in magnetohydrostatic equilibrium on their respec-
tive supports (cf. Eq. (1)).

5. A Variational Principle for Magentohydrostatic

Plasma Bubble Configurations

In this section we will extend the variational princi-
ples with pressure confined free-boundary conditions to
the general case of magnetic fields in magnetohydrostatic
equilibrium.

The work needed to create a bubble MB with interior
pressure pB � 0 in an ambient pressure p0 is

Z

MB

⇣
p0 � pB

⌘
det , (8)

and we denote the pressure di↵erence between interior
and ambient pressures by

p� B p0 � pB. (9)

We view the exterior pressure as an additional structure on
the manifold M and therefore denote the ambient Rieman-
nian manifold as a triple (M, h·, ·i, p0), whereas a plasma
bubble configuration is a triple (MB, pB, B).

Definition 5.1. Let (MB, pB, B) be a plasma bubble con-
figuration in a three-dimensional oriented Riemannian
manifold (M, h·, ·i, p0). Then the magnetohydrostatic en-
ergy is given by

E(MB, pB, B) =
Z

MB

⇣
p� + |B|

2

2

⌘
det . (10)

In order to examine the critical points of (10) we com-
pute its variational gradient. When we allow the support
MB B supp(B) ✓ M of the field B to change its shape, the
internal energy of the system

P(MB, pB, B) =
Z

MB

p� det (11)

changes.

Theorem 5.2. Let (MB, pB, B) be a plasma bubble config-
uration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0) and N 2 �T M be the outward-pointing
normal of @MB. Then the energy variation corresponding
to a variational vector field Y 2 �T M on M is given by

E̊(MB, pB, B) =
Z

MB

hgrad p� � (curl B) ⇥ B,Y i det

+

Z

@MB

⇣
p� � |B|22

⌘
hY,Ni ◆N det

+

Z

@MB

hB,YihB,Ni ◆N det . (12)

Proof. See App. Appendix C.

An immediate observation is that the last summand of
Eq. (12) vanishes for fields confined by a magnetic sur-
face, i.e., hB,Ni = 0. Therefore, as a direct consequence
of Thm. 5.2, we obtain:

Theorem 5.3. Let (MB, pB, B) be a plasma bubble config-
uration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0). Then the magnetic field B on MB is a
critical point of (10) under variations by di↵eomorphisms
if and only if B is in magnetohydrostatic equilibrium, i.e.,
(curl B) ⇥ B = grad p� on its support and p� = |B|2

2 on
@M0 \ @MB.

For vanishing interior pressure pB = 0, this result gen-
eralizes a version of the minimum energy theorem for
force-free fields [39, Sec. 2.8] for pressure confined fields
which are bounded by a magnetic surface.

Corollary 5.4. Let (MB, B) be a magnetic bubble config-
uration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0). Then the magnetic field B on MB is a
critical point of (10) under variations by di↵eomorphisms
if and only if B is in magnetohydrostatic equilibrium, i.e.,
(curl B)⇥B = 0 on its support and p0 =

|B|2
2 on @M0\@MB.

6. Discrete Ideal Magnetic Relaxation

Ideal magnetic relaxation as proposed by Mo↵att [8]
assumes volume preservation in order to account for gas
pressure. Considering the gaseous nature of e.g., stel-
lar plasma, this assumption may be deemed unnatural.
Thm. 5.2 provides an alternative variational principle
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which circumvents this shortcoming, yet still exhibits so-
lutions to Eq. (1) as its critical points. In particular, for an
algorithmic treatment, dropping the incompressibility as-
sumption is favorable as no additional pressure projection
steps are needed and the discretization of magnetic bubble
configurations as introduced by Padilla et al. [29] can be
extended to serve as a structure preserving discretization
of plasma bubble configurations.

Figure 4: The output of our method for flux tubes in the configuration
of Borromean rings. The center curves are colored according to the
thickness of the tube indicating that a variable thickness is indeed needed
to accurately represent equilibria of the energy in Eq. (10).

6.1. Plasma Filaments

Consider a magnetic flux tube supported on a regular
tubular neighborhood with circular cross-section. In this
case, we have a well-defined center curve � : [0, L] ! M
and we can view the flux domain as a curve with thick-
ness. That is, a pair (�, A) consisting of a smooth, reg-
ular center curve � : [0, L] ! M together with a cross-
sectional area function A : [0, L]! R>0.

The flux h > 0 through every cross section is con-
stant along the center curve and does not change under
deformation by orientation preserving di↵eomorphisms
' : M ! M. Following Padilla et al. [29] we will refer
to a curve with thickness (�, A) together with a fixed flux
h > 0 as a magnetic filament with magnetic field strength
associated to tube geometry. Moreover, we employ their

approximation [29, Sec. 5.1] which relates the modulus
|B| of a magnetic field to the geometry of (�, A).

By allowing for interior gas pressure, we generalize the
notion of magnetic filaments and define plasma filaments
to be curves with thickness with a fixed flux h > 0 and
an interior pressure pB � 0, which, by virtue of (1), is
constant along each plasma filament.

Accounting for interior pressure the magnetic field
strength associated to a tube geometry confined by an am-
bient pressure p0 > 0 is determined by

|B|2
2 = p� , (13)

which can be derived by following the derivation
of Padilla et al. [29, Sec. 5.1] almost verbatim. As ex-
pected, this is equivalent to the pressure continuity

|B|2
2 + pB = p0 (14)

across the boundary @M0 \ @MB.

6.2. Discrete Energy and Approximation of the Plasma
Domain

For a plasma filament the energy (10) can be computed
as

E(�, |B|) = h
Z L

0

✓
p�
|B| +

|B|
2

◆
ds (15)

which approximates E(MB, B) where MB is the plasma fil-
ament [29]. A plasma domain MB is then approximated
by a collection � of plasma filaments, each representing a
fixed flux. Therefore, we may approximate the volumetric
energy (10) by the discrete energy

E(�) =
X

�2�
h
Z L�

0

✓
p��
|B� | +

|B� |
2

◆
ds . (16)

6.3. Structure Preservation
A number of properties of plasma are preserved under

variations by a family of di↵eomorphisms t 7! 't : M !
M. The helicity, a measure of the complexity of the mag-
netic field, is one of them as can be easily shown in the
smooth setting. In the discretized setting, by the La-
grangian nature of the algorithm, the isotopy class of the
field is preserved (su�ciently small time-stepping pro-
vided (Appendix E)) and therefore also the helicity.
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In the smooth setup, the magnetic flux � B ◆B det is
transported under di↵eomorphims by �t = '⇤t �0. A simi-
lar statement holds true for the interior pressure functions.
Eq. (1) says that the interior pressure is constant along the
field lines, a property which is also preserved under trans-
port by di↵eomorphisms.

In the discretized setting, we prescribe a magnetic flux
and an interior pressure per filament. Therefore, the prop-
erty that the gradient of the pressure perpendicular to the
field lines (Eq. (1)) is trivially satisfied at all times. More-
over, as we move the curves as Lagrangian variables,
these prescribed magnetic fluxes and interior pressures
are transported together with the curves and hence remain
constant along the curves, i.e. the field lines of the mag-
netic field B.

Figure 5: The initialized configuration (left) and the relaxed state (mid-
dle) of a Hopf link discretized by 100 plasma filaments per link compo-
nent together with a cross-section of the relaxed state (right).

7. Numerical Experiments

We performed numerical experiments on the discrete
ideal magnetic relaxation presented in Sec. 6. For our ex-
periments we use the code provided by Padilla et al. [29]
which we adapted according to the discussions presented
in Sec. 5 and Sec. 6, leaving the methods for the energy
minimization unchanged (cf. Sec. Appendix E).

7.1. Knots and Links
We were able to successfully relax a variety of knots

and links (Fig. 6). Pierański [12] states that “any algo-
rithm aimed at finding the ideal conformations of prime
knots should pass is the ability to bring knots 10161 and
10162, the Perko pair, to a single, ideal conformation.”
We successfully performed a corresponding experiment
whose outcome is shown in Fig. 2. Another such exper-
iment considers the torusknots T2,3 and T3,2 [31], which

Figure 6: Consecutive stages of the evolution (left to right) of discrete
ideal magnetic relaxation of a variety of knots and links: trefoil knot,
figure eight knot, torus knot T5,2, whitehead link, borromean rings, two
linked trefoil knots (top to bottom).

our algorithm relaxes to the same equilibrium configura-
tion (Fig. 1 and Fig. 6 first row).

A key improvement our formulation in terms of plasma
filaments brings (compared to to algorithms for relaxation
from knot theory) is that it allows for filaments with vari-
able, time-dependent thickness—thus capturing the phe-
nomenon of magnetic elasticity (cf. Sec. 1.1). Fig. 4
showcases equilibrium states of Eq. (16) which exhibit
a non-constant thickness along their center curve, so that
this feature is indeed needed for faithful experiments.

7.2. Approximation of Steady Euler-Flows

By choosing to represent the field topology by a larger
collection of field lines, we believe that the method is a
useful tool for approximating steady Euler-flows of arbi-
trarily complex topology. Comparing the relaxed states of
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Fig. 4 or Fig. 1 to Fig. 7, it is clear that the approxima-
tion of the knots and links with only a single flux strand
per link component is markedly coarse. With many fila-
ments per connected components, the results are thought
to be much closer to a “physical ground truth” as the
free-boundary conditions a↵ect the equilibrium states to
a larger extent.

Figure 7: The initialized configurations (left column) and the relaxed
states (right column) of a trefoil know discretized by 100 plasma fila-
ments (top row) and borromean rings discretized by 50 plasma filaments
per link component (bottom row).

From Fig. 5 it is apparent, that the resulting equilibrium
configurations share the characteristic structures that the
smooth counterparts have. For example, the filaments at
the outer edge are approximately of the same thickness,
representing a uniform field strength matching the pres-
sure continuity conditions (cf. Thm. 4.4). The same is
true for the current sheets, which in our model are ac-
counted for by the surfaces of the plasma filaments. That
said, Fig. 5 shows that the model also automatically han-
dles the formation of these current sheets which are found
in our model as the contacting surfaces of the plasma fil-
aments. The resulting configuration appears to be close
to the geometrically less flexible discretization employed
by Hudson et al. [28].

The field lines of a generic magnetic field in MHS equi-
librium do not have to be closed [10, Chapter 2], so that
we unfortunately cannot apply our discretization in those

cases. This problem shares similarities with the Cleb-
sch representation of vorticity lines of fluid fields [41].
Chern et al. [41] point out that by the Poincaré recur-
rence theorem [42], almost every such field line will re-
turn arbitrarily closely to its initial point, making it “al-
most closed” still allowing for meaningful approxima-
tions with our method.

8. Variational Principles for Non-Ideal Relaxation

with Free-Boundary Conditions

For many practical applications, the magnetic field is
not bounded by a magnetic surface, but field lines pass
through the boundary @M. One such example is the solar
corona, where the domain of interest is the exterior of the
sun bounded by the sun’s photosphere [23, 43, 29]. The
corresponding boundary conditions which fix the isotopy
class of the field in this case are commonly referred to as
line tied. The variational principle for magnetohydrostatic
plasma bubbles still applies, provided we only consider
di↵eomorphisms M ! M which fix the boundary ⌃ B
@M pointwise.

Theorem 8.1. Let (MB, pB, B) be a plasma bubble config-
uration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0) with boundary ⌃. Then the magnetic
field B on MB is a critical point of (10) under varia-
tions which fix the boundary ⌃ pointwise if and only if B
is in magnetohydrostatic equilibrium, i.e., (curl B) ⇥ B =
grad p� on its support and p� = |B|

2

2 on @M0 \ @MB.

Moreover, we retrieve the main result of Padilla et al.
[29, Thm 3.] as a corollary of Thm. 8.1 for the special
case of magnetic bubble configurations (pB = 0).

Corollary 8.2. Let (MB, B) be a magnetic bubble config-
uration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0) with boundary @M = ⌃. Then the mag-
netic field B on MB is a critical point of (10) under vari-
ations which fix the boundary ⌃ pointwise if and only if B
is force-free on its support and p0 =

|B|2
2 on @M0 \ @MB.

8.1. Non-Ideal Cases
So called Taylor relaxation constrains the (relative) he-

licity [32, 44], which can be understood as the degree of
knottedness of the field, together with flux boundary con-
ditions. Interestingly, constraining the helicity does not
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su�ce to preserve the field topology—which is incompat-
ible with ideal MHD—and stationary points of the corre-
sponding variational principle are linear force-free fields
on their support [23].

So if M is a manifold with boundary, the appropriate
class of variations comes from di↵eomorphisms M ! M
which do not leave the boundary fixed, but only respect
prescribed boundary conditions on ⌃B B ⌃ \ MB. By
considering this class of variations, we also obtain state-
ments for the missing cases we discussed in Sec. 3 with
free-boundary conditions. The generalization of the Wolt-
jer minimum-energy principle presented by Dixon et al.
[23] can be stated as

Theorem 8.3. Let (MB, B) be a magnetic bubble configu-
ration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p) with boundary @M = ⌃. Then if the
magnetic field B on MB is a critical point of (10) under
variations which fix the intersections ⌃B = @M \ MB, the
boundary flux � 2 C1(⌃) and the relative helicity, the
magnetic field is linear force-free, i.e., curl B = �B for a
constant �.

In case we also drop the helicity constraint, harmonic
fields arise from the least restrictive class of variations we
consider, which consists of those di↵eomorphisms M !
M whose restrictions to @M solely preserve the bound-
ary conditions. The corresponding variational principle is
known as the minimum energy theorem for potential fields
[39, Sec. 2.8]. The following Lemma from Padilla et al.
[29] states that being curl-free on ⌃ is already a su�cient
condition for critical points of (10) to be harmonic.

Lemma 8.4. Let (MB, B) be a magnetic bubble configu-
ration in a three-dimensional oriented Riemannian man-
ifold (M, h·, ·i, p0) with boundary @M = ⌃ and the set of
field lines which have points on the boundary is dense in
MB. Then if B is force-free and curl B = 0 on ⌃B, then B
is harmonic.

The result does not come by surprise, as divergence-
free and force-free property of B imply that there is a � 2
C1(MB) such that curl B = �B from which we conclude
that 0 = hgrad �, Bi, i.e., � is constant along each field
line. Hence, if � = 0 on the boundary, it vanishes along
the whole field line.

Theorem 8.5. Let (MB, B) be a magnetic bubble con-
figuration in a three-dimensional oriented Riemannian
manifold (M, h·, ·i, p0) with boundary @M = ⌃. More-
over, let hB,Ni(p) , 0 for all p 2 ⌃, and the sets
{p 2 ⌃ | BT , 0} be dense in ⌃ and {p 2 MB |
the integral curve of B through p hits @M } be dense in
MB. Then if the magnetic field B on MB is a critical
point of (10) under variations which fix the intersections
⌃B = @M \ MB and the boundary flux � 2 C1(⌃), the
magnetic field is curl-free, i.e., curl B = 0.

Proof. See App. Appendix D

There exist a variety of e�cient numerical methods for
computing harmonic fields from given boundary condi-
tions, even on infinite domains [45, 46].

9. Discussion and Concluding Remarks

Inspired by the thought experiment of magnetic re-
laxation, we have derived a comprehensive collection of
variational principles for special static solutions of ideal
MHD with pressure confined free-boundary conditions
which complement results obtained in [23] and [29].

Moreover, we present a corresponding structure pre-
serving discretization of plasma bubble configurations
into plasma filaments as a straightforward generalization
of the results obtained by Padilla et al. [29] which allows
us to employ their numerical framework—coming with
the same benefits and limitations.

Though basic experiments were successful (cf.
Sec. 7.1), starting from generic initial configurations one
cannot yet expect to find true global minima with the local
nature of the present algorithmic framework. The strictly
local nature of the quasi-Newton method for energy mini-
mization proposed in [29] is prone to getting stuck in local
minima. For a more e�cient energy minimization which
is likely to attain global minima, a more elaborate opti-
mization (as performed e.g., in [4]) is needed.

Plasma filaments can be thought of as curves with
thickness and thus, similar as for the rope length prob-
lem, the resulting configurations may be considered “nat-
ural” representatives of the given knot or link type. The
respective spectrum of ground state energies is believed
to provide information about the topological complexity,
although a suitable normalization would be necessary.
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In particular the inclusion of filaments with a variable
thickness makes the presented framework less geometri-
cally rigid and thus favorable (compared to algorithms de-
veloped for the rope length problem) for the relaxation of
knots and links by magnetic relaxation.

Another interesting extension would be to include re-
connection mechanisms of filaments and boundary treat-
ments which is necessary for possible physical appli-
cations such as simulations of superfluids [47, 48, 49]
or non-ideal relaxation which is of importance for solar
physics, or controlled fusion reactors [33, 50, 51, 52].

Figure 8: Plasma filaments (blue) resulting from smoothing a C2-valued
wave function  which was obtained from isotopy constrained plasma
filaments in magnetohydrostatic equilibrium (red) using the method
by Chern et al. [41]. We note that smoothing the wave function  leads
to reconnections and thus a change of the filament topology.

A first way to approach this task could be, for example,
to complement the method presented here with another
method based on Clebsch variables [48, 41]. Based on
level sets, Clebsch variables allow an implicit (yet La-
grangian) representation of the plasma filaments which
can naturally handle topology changes resulting from re-
connection. Since all our filaments represent the same
magnetic flux, we can construct a C2-valued wave func-
tion  from them. If we smooth the function  and recon-
struct the filaments represented by it, reconnections take
place in a natural way (Fig. 8).

Though this approach leads to reconnections (Fig. 8), it
fails to capture the helicity preservation that is sought for
in many applications. The plasma filaments we propose
in this paper inherently assume untwisted magnetic fields
and are thus cannot account for the twist resulting from
helicity preserving reconnection of, e.g., a Hopf link as in
Fig. 9 [53, 47, 49].

Figure 9: Accounting for weak resistivity, helicity preseving relaxation
of a Hopf link consisting of two unknotted, linked components each
carrying an untwisted field with flux h > 0 leads to a reconnection in
such a way that the two tubes become a single, twisted tube carrying
flux h.
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Appendix A. Proof of Thm. 4.2

Proof. Let M"
i = {x 2 Mi | dist(x, @Mi) > "}. Then there

is a smooth function 'i : M ! [0, 1] such that supp'i ⇢
Mi and 'i(x) = 1 for all x 2 M"

i . Define B̃ =
P

i>0 'iBi
and let � 2 C1(M) be compactly supported away from
@M. Then, since 'i, Bi have disjoint supports from ' j, Bj
for i , j, using Stokes’ theorem and the divergence-free
property of the Bi fields, we compute

Z

M
� div(B̃) det

=
X

i>0

Z

M

�
div(�'iBi) � 'ihgrad �, Bii

�
det

⌘ �
X

i>0

Z

Mi

hgrad �, Bii det

= �
X

i>0

Z

Mi

div(�Bi) det

= �
X

i>0

Z

@Mi

�hBi,Nii det

= 0 ,

where we used that the normal vectors Ni of @Mi and Bi
are perpendicular, Ni ? Bi|@Mi , and ⌘ denotes equality up
to terms vanishing for "! 0.

Appendix B. Proof of Thm. 4.4

Proof. Let M"
i = {x 2 Mi | dist(x, @Mi) > "}. Then there

is a smooth function 'i : M ! [0, 1] such that supp'i ⇢
Mi and 'i(x) = 1 for all x 2 M"

i . Define

p̃ = '0 p , B̃ =
X

i>0

'iBi , p̃B =
X

i>0

'i pi .

Now, let Y 2 �T M be compactly supported away from
@M. Then, since 'i, Bi have disjoint supports from ' j, Bj

for i , j, using Stokes’ theorem we compute

Z

M
h(curl B̃) ⇥ B̃,Yi det

=
X

i>0

Z

M
'2

i h(curl B) ⇥ B,Yi det

+
X

i>0

Z

M
hgrad'2

i , hY, BiiBi � |Bi|2Yi det

=
X

i>0

Z

M
'2

i h(curl B) ⇥ B,Yi det

+
X

i>0

Z

M

1
2 div

⇣
hY, BiiBi � |Bi|2Y

⌘
det

=
X

i>0

Z

M
'2

i h(curl B) ⇥ B,Yi det

+
X

i>0

Z

M

1
2'

2
i div

⇣
|Bi|2Y

⌘
det

⌘
X

i>0

Z

Mi

h(curl B) ⇥ B,Yi det

+
X

i>0

Z

@Mi

|Bi |2
2 hY,Nii ◆Ni det

where we used that the normal vectors Ni of @Mi and Bi
are perpendicular, Ni ? Bi|@Mi , and ⌘ denotes equality up
to terms vanishing for "! 0.

Moreover, again by Stokes’ theorem, we have

Z

M
hgrad p̃i,Yi det

=
X

i>0

Z

M

�hgrad'i, piYi + 'ihgrad pi,Yi
�

det

= �
X

i>0

Z

M
'i div(piY) det+

X

i>0

Z

M
'ihgrad pi,Yi det

⌘ �
X

i>0

Z

Mi

div(piY) det+
X

i>0

Z

Mi

hgrad pi,Yi det

= �
X

i>0

Z

@Mi

pihY,Nii ◆Ni det+
X

i>0

Z

Mi

hgrad pi,Yi det
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and similarly
Z

M
hgrad p̃0,Yi det = �

Z

@M0

p0hY,N0i det

+

Z

M0

hgrad p0,Yi det .

We thus obtain
Z

M
hcurl B̃) ⇥ B̃ � grad p̃0 � grad p̃B,Yi det

⌘
X

i>0

 Z

Mi

h(curl B) ⇥ B � grad pi,Yi det

+

Z

M0

hgrad p0,Yi det
!

+
X

i, j>0

Z

@Mi\@M j

⇣
pi +

|Bi |2
2

⌘
�

✓
p j +

|Bj |2
2

◆�
hY,N0i ◆N0 det

+
X

i>0

Z

@M0\@Mi

h
p0 �

⇣
pi +

|Bi |2
2

⌘i
hY,N0i ◆N0 det

which vanishes for all Y if and only if (curl B) ⇥ B =
grad pi, grad p0 = 0, pi +

|Bi |2
2 = p0 on @M0 \ @Mi for

i > 0 and |Bi |2
2 =

|Bj |2
2 on @Mi \ @Mj for i, j > 0.

Appendix C. Proof of Thm. 5.2

Applying the Reynolds transport theorem [54] to the
time-dependent terms p�, |B|

2

2 we get

d
dt

�����
t=0

Z

MB

'⇤t (p� det) =
Z

MB

hgrad p�,Yi det

+

Z

@MB

p�hY,Ni ◆N det ,

d
dt

�����
t=0

Z

MB

'⇤t
⇣ |B|2

2 det
⌘
=

Z

MB

hB̊, Bi det

+

Z

@MB

|B|2
2 hY,Ni ◆N det,

where we used Cartan’s magic formula, integration by
parts and the Divergence theorem.

Moreover, with B̊ = curl(Y ⇥ B), we compute
Z

MB

hB̊, Bi det

=

Z

MB

hcurl(Y ⇥ B), Bi det

=

Z

MB

hY ⇥ B, curl Bi det

�
Z

MB

div(|B|2Y � hB,YiB) det

= �
Z

MB

hcurl B ⇥ B,Yi det

�
Z

@MB

⇣
|B|2hY,Ni � hB,YihB,Ni

⌘
◆N det ,

so that the claim follows by putting everything together
and sorting the terms.

Appendix D. Proof of Thm. 8.5

To prove the theorem we will use

Lemma Appendix D.1. Let M be a three-dimensional,
compact Riemannian manifold with boundary @M = ⌃
and X 2 �T M. Then

(curl X)T = curl XT ,

where (·)T denotes the restriction to �T⌃.

Now we are in a position to show the actual statement:

Proof of Thm. 8.5. We will write det⌃ := ◆N det for the
induced volume form on ⌃ and add subscripts (·)⌃ to
vector calculus operators corresponding to ⌃. Then by
the assumption and similar computations as needed for
Thm. 8.2,

0 =
Z

⌃

hY, hB,NiBi det⌃

for all Y 2 �T⌃ with

0 = LY (hB,Nidet⌃)
=

�hY, gradhB,Nii + hB,Ni div⌃(Y)
�

det⌃
= div⌃ (hB,NiY) det⌃.
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Hence, for all Ỹ 2 �T⌃ with div⌃(Ỹ) = 0, we have

0 =
Z

⌃

D
1
hB,Ni Ỹ , hB,NiB

E
det⌃ =

Z

⌃

hỸ , Bi det⌃ ,

which implies the existence of a function � 2 C1(⌃) such
that grad⌃ � = BT . By Lem. Appendix D.1 we thus have
that on ⌃

(curl B)T = curl BT = curl grad⌃ � = 0 .

By Thm. 8.2, criticality implies force-freeness, so that by
decomposing curl B and B into their tangential and normal
components, we have

0 = ((curl B) ⇥ B)
���
⌃

= (curl B)T ⇥ hB,NiB
+ hcurl B,NiN ⇥ BT + (curl B)T ⇥ BT ,

which implies hcurl B,Ni = 0 as (curl B)T = 0 and N ⇥
BT , 0 on a dense set. Thus curl B|⌃ = 0 and the statement
follows from Lem. 8.5.

Appendix E. Numerical Energy Minimization

For our numerical experiments we have adapted the
codebase provided by [29] according to the discussions
presented in Sec. 5 and Sec. 6. In this section we outline
the implementation of the resulting algorithm.

Eq. (16) provides an approximation of the magnetohy-
drostatic energy (10) expressed in terms of the energies
(15) of a discrete set of plasma filaments �. Following
[29], we interpret the filament wise energy (15) as the
length of the respective plasma filament � 2 � measured
in a conformally changed metric

ds̃ B eu ds =

8>>><
>>>:

p
2p� ds in M0✓

p��
|B� | +

|B� |
2

◆
ds in MB,

(E.1)

which is smooth in M0 and MB respectively and contin-
uous across @M0 \ @MB. Therefore, for optimization of
the energy can be performed by iteratively shortening the
length of the individual filaments with respect to ds̃.

Appendix E.1. Time-Splitting

We note that the metric ds̃ depends on |B| which is
determined from the geometry of the plasma filaments
�. We circumvent the coupled nature of the optimiza-
tion problem by introducing the following time splitting,
which was first proposed by [29]: First, given a config-
uration � of plasma filaments, the associated magnitude
of a magnetic field |B| and hence the conformal factor
is computed. Then, fixing the conformal factor, a curve-
shortening flow step is performed. To find a fixed point,
these two steps are alternated until convergence.

Algorithm 1

Input: Initial curve set �, ambient pressure p0 > 0, inte-
rior pressure pB � 0.

Output: � in relaxed state.
1: while not converged do

2: u, grad u ComputeMetric(�);
3: � CurveShortening(�);
4: end while

Appendix E.2. Implementation

We have implemented our proposed algorithm in
SideFX’ Houdini where we represent the individual
plasma filaments as a discrete curve, i.e., a map
� : {0, . . . , n} ! R3, where the position of a vertex i 2
{0, . . . , n} is denoted by �i. Due to the fixed flux and
h = |B| A, the magnitude |Bi| of the associated magnetic
field at vertex i is determined by the radius r of the plasma
filament [29, Sec. 6]. For all our experiments shown we
have chosen p0 = 1 and p� constant across all filaments.
The remaining parameter h > 0 then amounts to a scaling
of the resulting equilibrium configurations.

Therefore, given the collection � of discretized plasma
filaments, we may compute the logarithmic conformal
factors

ui = log
✓

p�i
|Bi | +

|Bi |
2

◆

for every vertex i. The gradient of the logarithmic con-
formal factor ui is approximated employing a finite di↵er-
ence scheme

(grad u)i ⇡
X

� j2N(�i)

(u j � ui)
� j��i

|� j��i |2 ,
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where N(�i) is a set of neighboring vertices of �i includ-
ing vertices coming from virtual filaments that fill the gas
domain with field strength according to (13). Note that for
the gradient approximation we only merely need to know
how to evaluate the logarithmic conformal factor u on the
discrete curves �.

For the curve-shortening flow (with respect to ds̃) we
perform a quasi-Newton step proposed by [29] which, de-
noting the k-th iterate of �i by �k

i , is given by

�k+1
i = w+�k

i+1 + w��k
i�1 � 1

2

⇣
w�`2

� + w+`2
+

⌘
(grad u)(�k

i ),

where `� B |�k
i � �k

i�1|, `+ B |�k
i+1 � �k

i | and

w� B `+eu(�k
i�1)

`+eu(�k
i�1)
+`�eu(�k

i+1)
, w+ B `�eu(�k

i+1)

`+eu(�k
i�1)
+`�eu(�k

i+1)
.

In order to preserve the field topology, we bound the step
size by the tube radius of the plasma filaments.
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