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We consider motion e�ected by shape change. Such motions are ubiquitous
in nature and the human made environment, ranging from single cells to
platform divers and jelly�sh. The shapes may be immersed in various media
ranging from the very viscous to air and nearly inviscid �uids. In the absence
of external forces these settings are characterized by constant momentum.
We exploit this in an algorithm which takes a sequence of changing shapes,
say, as modeled by an animator, as input and produces corresponding motion
in world coordinates. Our method is based on the geometry of shape change
and an appropriate variational principle. The corresponding Euler-Lagrange
equations are �rst order ODEs in the unknown rotations and translations and
the resulting time stepping algorithm applies to all these settings without
modi�cation as we demonstrate with a broad set of examples.
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1 INTRODUCTION
What do cells, spermatozoa, snakes, stingrays, falling cats, astronauts,
and platform divers have in common? They all e�ect motion—
rotation and/or translation—through shape change and the resulting
motion can be derived from the change of geometry with the aid
of a variational principle. Remarkably, the resulting equations are
�rst order in time rather than the usual second order equations
of Newtonian dynamics. An algorithm that treats all of the above
mentioned settings uniformly for purposes of animation is the
subject of this paper.
To introduce the basic outline of our approach we begin with a

simple representative example.

1.1 A First Example
Consider the motion of a snake. Changing its body shape in a
sinusoidal fashion, forward “slithering” motion results. How can we
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Fig. 1. Le�: underwater video capture of a sting ray. Right: output of our
algorithm based on providing only an undulating surface in the shape of a
sting ray. Video 0:04.

model this? Let the instantaneous shape of the snake be given by a
univariate curve

B 7! W (B) 2 R3 B 2 [0, (]
and denote the set of all such curves byM. This in�nite dimensional
manifold is invariant under the action of ⌧ = SE(3), the group of
rigid motions: if W 2M then so is 6(W) for 6 2 ⌧ . We formalize the
notion of a shape as the orbit

⌧ (Ŵ) = {6(Ŵ) | 6 2 ⌧}
representing a single shape in all its possible placements. M is the
union of all these orbits, which are 6-dimensional submanifolds of
M. A time indexed family of shapes—deformations of the snake
body—then is a map into the set of orbits

C 7! ⌧ (ŴC ) C 2 [0,) ] .
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Input: Ŵ : [0,) ] !M

Ŵ)

Ŵ0

SE(2) orbit of ŴC

6C (ŴC )

Output: integrated motion

Fig. 2. Our algorithm takes as input a discrete time indexed sequence of
shapes. In the case of planar curves the placement and orientation are
parameterized by rotations ((1) and translations (R2) as indicated on the
right. Our algorithm then outputs placements and orientations in world
space for each shape, realizing the associated motion.

Given such a sequence of shapes we want to �nd representatives
WC 2 ⌧ (ŴC )—particular placements in world space—realizing the
motion induced by shape change (see Fig. 2).

Snakemotion is dominated by friction forces which wemodel with
Rayleigh dissipation as proportional to velocity [Strutt, M. A. (Lord
Rayleigh) 1871]. Helmholtz’ principle of least dissipation [1882]
then calls for minimizing the total energy dissipation given by the
quadratic form

E(W) = 1
2

π )

0
hW 0,W 0iD 3C,

where W 0 denotes the time derivative and h·, ·iD the dissipation
metric. Because the shapes ⌧ (ŴC ) are given, we may only vary
6 as we go from one orbit to the (in�nitesimally) next orbit. To
minimize dissipation our movement should therefore be orthogonal—
with respect to the dissipation metric—to the orbits: any additional
movement in the orbit direction unnecessarily increases dissipation.
Importantly, this condition—orthogonality of W 0 to the orbits—does
not involve W 00. In the absence of external forces we therefore only
need to integrate a �rst order ODE in 6 to determine the global
motion induced by the shape change.

This reduction of the physical model to a �rst order 6-dimensional
system thanks to the geometry—moving orthogonally to the orbits—
applies verbatim to other settings which are dissipation dominated.
Remarkably this geometric argument also applies to examples such
as the astronaut turning in zero gravity for which only inertial forces
matter. In that setting Euler’s principle of least action [1744, Addend.
II; p. 309] applies and shape change induces motion in accordance
with the constancy of momentum.

All these di�erent scenarios are uni�ed when viewed from the per-
spective of Newtonian mechanics in Riemannian manifolds [Padilla
et al. 2019, Eq. 2]. Given a manifold M of system states—the shapes
of the snake—two Riemannian metrics are at play: the inertia met-
ric which measures the kinetic energy 1

2 hW 0,W 0iK and the dissipa-
tion metric which measures the energy dissipation due to friction
1
2 hW 0,W 0iD . In many interesting settings one of the two metrics dom-
inates, leading to a �rst order di�erential equation for the resulting

motion. (For completeness we will also show some second order
scenarios which involve both inertial and dissipative e�ects.)
After brie�y reviewing relevant literature we will turn to the

general setting and describe our setup in detail. This will be followed
by a series of examples and comparisons with acquired sequences to
demonstrate the e�cacy of our approach.

1.2 Related Work
Limbless locomotion such as that of snakes has long fascinated biol-
ogists and physicists alike. Early models of snakes and worms were
based on the bending of an elastic bar subject to a normal/tangential
frictional anisotropy [Kuznetsov et al. 1967] and such models con-
tinue to be re�ned [Hu et al. 2009]. Snakes have also inspired robotic
designs [Liljebäck et al. 2012] which require physical models for
actuation of shape change [Ostrowski and Burdick 1998]. In the
computer graphics literature we �nd mass-spring systems [Miller
1988] and point-based physics [Waszak 2018] simulations control-
ling the body shape through forces. In contrast, we assume that the
shape change is given on input and the only task remaining is the
placement of the changing shape in the world coordinate system. In
the absence of external forces this requires only the solution of a
�rst order system. In App. A we prove Thm. 2 which is a variant
of Noether’s theorem [1918] stating that symmetries of variational
problems lead to conservation laws. In our case there are as many
symmetries as there are e�ective degrees of freedom and the con-
stancy of the constants of the motion—a �rst order equation—is
equivalent to the original—second order—Euler-Lagrange equations.

More broadly, dissipative models of motion through shape change
govern small organisms [Guasto et al. 2020] which “swim” in very
low Reynolds number environments [Lauga and Powers 2009; El-
geti et al. 2015]. These are governed by Aristotelian—�rst order—
mechanics [Purcell 1977] with “their motion governed entirely by
the sequence of shapes the swimmer assumes.” [Shapere andWilczek
1989a]. Relevant for our purposes is that shape change is everything
in the dissipative limit regime, and—as we will show—continues to
work remarkably well outside the limiting regime and with very
simple dissipation models.

A formally identical—�rst order—treatment is possible for settings
without dissipation but with constant, not necessarily zero, linear
and angular momentum. An example is the astronaut who uses
shape change to reorient with zero angular momentum [Kulwicki
and Schlei 1962]. Similarly, the falling cat rights herself without

Fig. 3. Starting with an animator provided sequence of snake shapes in
model local coordinates [Daye 2019] the placement in the global frame is
produced as the output of our simulation. Video 1:10.
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any angular momentum [Kane and Scher 1969; Montgomery 1993],
an observation that has long intrigued researchers [Marey 1894].
Relatedly, the platform diver—who manages complex sequences
of twists and somersaults—does so with constant, non-zero angu-
lar momentum [Frohlich 1979, 1980]. Wooten and Hodgins [1996]
demonstrated second order Newtonian physics simulations of plat-
form divers, using force based controllers to e�ect the required
shape changes.

Motion due to shape change also appears in ideal �uids [Kuznetsov
et al. 1967; Kozlov and Ramodanov 2001] and not just in the dis-
sipative limit regime. The only di�erence here is that the inertia
tensor has to account for the inertia of the body as well as that of
the surrounding �uid [Kirchho� 1870, 1876]. This can be accom-
plished by solving a boundary value problem [Kanso et al. 2005;
Weißmann and Pinkall 2012], avoiding the need to simulate the �uid
over the entire volume [Tan et al. 2011; Lentine et al. 2011]. Further
e�ciencies can be gained by modeling the e�ect of the �uid through
local thrust and drag models [Tu and Terzopoulos 1994; Wu and
Popović 2003; Ju et al. 2013; Min et al. 2019], as we do.

1.3 Contributions
We give a uni�ed algorithm for motion arising from shape changes.
It applies to curves as much as to surfaces, as well as more general
settings, with no signi�cant modi�cations. Suitable scenarios that
can be modeled in this way include motion in various types of
media. In each case the motion minimizes a variational energy. In
the absence of external forces, the resulting equations are �rst order
in the Euclidean motion placing the shape sequence in the world
coordinate frame. We demonstrate the e�cacy of our approach with
a broad range of motion scenarios.

2 DYNAMICS OF SHAPE CHANGE
We are interested in understanding how motion can be e�ected
by shape change. Thus we consider the changing shape—typically
animator designed—as input to our algorithm, leaving us with only
6 degrees of freedom—rotation and translation into the world co-
ordinate system—to be determined at each time. We address three
principal, idealized settings, which will be handled by our uniform
approach and algorithm. Sec. 2.1 considers dissipation dominated
motion using the dissipation metric; Sec. 2.2 considers motion in a
negligible medium using the standard inertia metric; and Sec. 2.2.1
considers motion in an inviscid �uid using the extended inertia
(Kirchho�) metric.

The common setup deals directly with space discrete objects.
Hence a positioned shape is a collection of vertices with point posi-
tions

W = {? 9 2 R3 | 9 2 (1, . . . ,=)} 2 (R3)=

in general position. The totality of such positioned shapes will be
denotedM. Typical examples ofM are the vertex positions of poly-
lines approximating curves and of triangle meshes approximating
surfaces, though more general arrangements of points, for example,
skeleton rigs, also appear. When a positioned shape is transformed
by a rigid motion 6 2 ⌧ : SE(3) it is understood that any vectors at
the vertices are transformed as well although using only the rotation

Curve Surface
Graph

Fig. 4. Visualization of the metric tensors ⌫W9 as ellipsoids at the vertices
of curves (tangentially oriented), surfaces (normally oriented), and more
general graphs (here: rig skeletons with point masses). The long principal
axes of the ellipsoids indicate directions in which motion is relatively easier.

part of 6. A shape

⌧ (Ŵ) : {6(Ŵ) | 6 2 ⌧}
is the set of all possible placements of Ŵ . To describe the di�erent
metrics, let ⌫W 2 R3=⇥3= be a positive de�nite, self-adjoint operator
(typically dependent on W ). For §W, W̊ 2 )WM two tangent vectors at
W 2M the associated metric is given by

h §W, W̊iB = h⌫W §W, W̊i
where h·, ·i is the standard Euclidean metric. Additionally we require
the resulting metric to be invariant under rigid motions

h §W, W̊iB = h6( §W),6(W̊)iB 6 2 ⌧ .
In our examples the metric tensors are taken to be block diagonal
with blocks at each vertex of the form

⌫W9 : U 9 � + V 9% 9 (1)

where U 9 , V 9 2 R are arbitrary constants, � the identity on R3, and
% 9 the projector onto the normal space at 9 . For curves, with unit
tangent vectors t9 , % 9 : � � t9 ⌦ t9 . For surfaces with unit normal
vector n9 , % 9 : n9⌦n9 . As integrated quantities, the weights (U 9 , V 9 )
should include an integration factor< 9 representing lumped mass
proportional to length, area, or volume according to the underlying
domain of integration (Table 1). Fig. 4 visualizes typical ⌫W9 for
di�erent settings. The physical meaning of (U 9 , V 9 ), and how to set
them, is discussed in Secs. 2.1, 2.2, and 2.2.1.

Suppose now we are given a (continuous) time indexed family of
shapes over some time interval

[0,) ] 3 C 7! ŴC 2M
prescribing a sequence of deforming shapes. Our task then is to �nd
Euclidean motions 6C 2 ⌧ to place the shapes into world space:

WC = 6C (ŴC ).
Note that since ŴC is given on input the only variable we get to
control—and must determine—is 6C .

We now turn to the particulars of motion in di�erent media. They
are distinguished by the choice of parameters and the physical
meaning of the metric tensors ⌫W9 as well as the use of an appropriate
variational principle for the determination of 6C .
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Original video Traced video Extracted shapes Simulation

Fig. 5. Swimming sperm present an example of the dissipative limit with
very high viscosity. First column: acquired video of sperm motion [Guasto
et al. 2020]; second column: movement trace of the “head” in green; third
column: shapes given as input to our algorithm; fourth column: result of our
simulation (<head = 3< 9 ). Video 0:36.

2.1 Dissipation-Dominated Motion
For tiny creatures (like bacteria) water appears to be highly vis-
cous and the surrounding �uid moves according to the equations
of Stokes �ow [Rieutord 2015, Ch. 4]. This means that the �uid
velocity minimizes dissipation among all divergence-free vector
�elds compatible with a no-slip condition on the boundary of the
shape-changing body. In this limit friction forces are truly linear in
the velocities of the points on the body boundary, so our assumption
of Rayleigh dissipation is strictly valid. For larger creatures like
stingrays (Fig. 1) or jelly�sh (Fig. 8), i.e., at higher Reynolds numbers,
drag forces depend on velocities in a non-linear fashion and a variety
of mechanisms (like vortex shedding) contribute to drag [Vogel
1983, Ch. 5] (see also [Ju et al. 2013; Min et al. 2019]). No less, we
obtain surprisingly realistic results if we continue to use Rayleigh
dissipation as our drag model.
To model these settings, h·, ·iB is chosen to be the dissipation

metric onM. The associated quadratic form 1
2 |W 0 |2D captures the

energy dissipation. The total energy dissipation of a path [0,) ] 3
C 7! WC 2M is given by

E(W) = 1
2

π )

0
|W 0C |2D 3C . (2)

In order to determine the family C 7! 6C we appeal to Helmholtz’
principle of least dissipation [1882]. With WC constrained to be an
element of the prescribed orbit⌧ (ŴC )—and given an initial placement
WC=0 = Ŵ0—Helmholtz’ principle tells us that the actual positioning
C 7! WC due to shape change is the one that minimizes E(W) under
all variations compatible with the constraints

WC=0 = Ŵ0 WC 2 ⌧ (ŴC ) 8C 2 [0,) ] .

This leads to the following geometric characterization:

T������ 1. A curve W : [0,) ] !M solves the equation of motion
for movement in a highly viscous medium if and only if W is orthogonal
to the orbits, i.e., if

W 0C ? )WC⌧ (ŴC ) 8C 2 [0,) ] .

P����. A consequence from Thm. 2 for zero momentum. ⇤

In App. A, where we describe the di�erential geometry underlying
our dynamical model, the component of W 0 tangent to the orbits de-
termines the momentum. Thm. 1 says that for a shape-changing body
whose motion is dissipation dominated this momentum vanishes.

Original video Simulation Overlay

Fig. 6. Le�: video capture of a snake [Schiebel et al. 2019]; middle: result of
our simulation; right: overlay of captured and simulated data. Video 0:55.

Our setup for modeling dissipation applies verbatim to settings
with a highly viscous medium (Fig. 5). It is however also e�ective
in settings such as slithering locomotion of snakes. Fig. 6 shows
a comparison of shape data from video capture and the output of
our algorithm, showing excellent agreement for this simple motion.
Fig. 17 shows an example of more complex motion capture. In other
settings (Fig. 3) the changing shape is modeled by an animator
in a local coordinate frame and then moved to the global frame
by our algorithm. In all of these settings the dissipation tensor
was parameterized by a single anisotropy parameter n 2 [0, 1],
setting (U 9 , V 9 ) =< 9 (n, 1 � n) (Table 1). This anisotropy parameter
n controls the ease of tangential motion compared to normal motion
U9/(U9 + V9 ) = n . For “swimmers” in Stokes �ow n = 1/2 is a typical
value [Lauga and Powers 2009, Sec. 4.3]. In fact, drag based thrust is
not possible unless such a tangential/normal anisotropy in viscous
dissipation is present [Gray and Hancock 1955]. In the case of snakes,
n captures well motion on di�erent substrates (Fig. 7: from gravel
n ⇡ 0 to velvet n ⇡ 1).

What happens with motion at higher Reynolds number (lower
viscosity)? In that case energy dissipation is due to two sources.
The �rst is motion of the body normal to its surface. This sets the
whole �uid in motion and thereby transfers energy to the �uid, for
example in the form of vortex shedding. This pathway of energy
dissipation is not directly dependent on the �uid viscosity and its

n = 1
n = 1/2

n = 0

Fig. 7. A dissipation anisotropy is required for forward motion [Gray and
Hancock 1955]. The ratio of tangential/normal anisotropy controls the
e�ectiveness of forward motion. n . Video 3:20.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Fig. 8. Computed by our algorithm: the motion of a stylized jellyfish swim-
ming in an high Reynolds number fluid solely by the animator designed
cyclic motion of its umbrella. Video 0:20.

local contribution is captured by U 9 + V 9 . The second pathway arises
from viscous friction in a thin boundary layer around the moving
body. The energy dissipated in this way is proportional to surface
area, the squared norm of the tangential component of velocity,
and the �uid viscosity. The local contribution of this part of energy
dissipation is captured by U 9 . In the literature [Vogel 1983, Ch. 5]
and [Ju et al. 2013; Min et al. 2019] the isotropic part of the local
dissipation tensor (U 9 ), is called drag while the normal part (U 9 + V 9 )
is referred to as thrust. In our high Reynolds number examples Figs. 1
and 8, we found viscosity negligible, corresponding to n ⇡ 0.

So far we have treated motion which is dissipation dominated. In
that setting the dynamic momentum vanishes (Thm. 1). In the next
subsection we will encounter a physical scenario where there can
be non-zero momentum.

2.2 Inertia-Dominated Motion
Suppose that the shape-changing body of Sec. 2.1 is no longer
immersed in a dissipation dominated environment but rather in a
medium such as air or a vacuum, whose in�uence on the motion
we can safely neglect. Then the relevant physical principle is no
longer Helmholtz’ principle of least dissipation but Euler’s principle
of least action. This implies two changes:

• The relevant Riemannian metric onM now de�nes the kinetic
energy 1

2 |W 0 |2K instead of the energy dissipation due to viscous
friction.

• The admissible variations of W : [0,) ] ! M are limited to
those �xing both end points W0 and W) .

In either case the equations of motion arise from minimizing the
quadratic form de�ned by the respective metric and are formally
identical. This implies that we can use a single algorithm for settings
which are either dissipation or inertia dominated.

To see this note that if the points ? 9 2 W carry mass < 9 the
corresponding inertia tensor, which gives us the kinetic energy, is
given by (U 9 = < 9 , V 9 = 0) (Eq. (1)). Given W 2 M moving with
velocity W 0, angular momentum l and linear momentum p of W are
given by

l :
=’
9=1

< 9? 9 ⇥ ?09 p :
=’
9=1

< 9?
0
9 . (3)

Suppose now we are dealing with a shape-changing body that is
not subject to any external forces—such as gravity or forces from
the surrounding medium. Then the arguments in App. A show that
a curve W : [0,) ] ! M—subject to the constraints WC 2 ⌧ (ŴC )—
satis�es Euler’s principle of least action [1744, Addend. II; p. 309]
if and only if angular and linear momentum are both constant in
time—though they need not be zero.

Fig. 9. The shape change of the Armadillo astronaut is controlled by a
skeleton rig with point masses at the joints. Using this sequence of shapes
as input to our algorithm the astronaut manages to turn 90� over several
cycles while angular momentum remains zero throughout. Video 1:21.

For example, Fig. 9 shows an astronaut initially at rest and hence
with zero linear and angular momentum at all times. Yet, through a
sequence of shape changes, the astronaut is able to rotate [Kulwicki
and Schlei 1962].

When the only external forces come from gravity, we essentially
are still in a zero gravity situation: The center of mass of a shape-
changing body follows a parabola, while in a coordinate system that

Fig. 10. Le�: photographic capture of the cat righting reflex [Marey 1894]
with zero angularmomentum. Right: output of our algorithm a�er controlling
the cat shape through a skeleton rig with point masses. Vertical motion of
the center of mass due to gravity was added separately. Video 1:47.
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translates with the center of mass we see a zero gravity motion with
zero linear momentum. For the falling cat [Marey 1894] (Fig. 10)
the angular momentum is zero, so it is in a similar situation as
the astronauts [Shapere and Wilczek 1989b]. Similarly, platform
divers (Fig. 11) carry constant though non-zero angular and linear
momentum—ignoring gravity—after pushing o� the platform and
yet master intricate sequences of twists and somersaults through
carefully sequenced shape changes [Frohlich 1979, 1980; Wooten
and Hodgins 1996].

Fig. 11. Platform diver executing a twist and somersault sequence controlled
by their shape change which in turn was controlled by a skeleton rig with
point masses. Motion of the center of mass due to gravity was added
separately. The jump represents a case of constant but non-zero angular and
linear momentum. Video 2:18.

In all the inertia dominated settings we have considered so far the
medium played no role. Consequently we were able to account for
the e�ect of gravity a posteriori, keeping the constant momentum
setting. This changes when the medium has signi�cant inertia itself,
a case to which we now turn.

2.2.1 Motion in Inviscid Fluid. The motion of a shape-changing
body in an inviscid �uid, i.e., without viscous losses, continues to
be governed by Euler’s principle of least action. But this time with
regard to the kinetic energy 1

2 |W 0 |2K held by the combined body and
�uid system. To avoid simulating the �uid volume [Tan et al. 2011;
Lentine et al. 2011] we need an estimate of the kinetic energy of the
�uid. The most conservative such estimate is given by the unique
gradient �ow compatible with the motion of the shape-changing
body [Da et al. 2016; Padilla et al. 2019]. This Neumann boundary
value problem, while avoiding simulating the �uid volume, still
requires a global solve over the bounding surface [Kanso et al. 2005].
In the context of rigid bodies under water—no shape change—this
idea was �rst developed by Gustav Kirchho� [1870; 1876] and later
applied to shape-changing bodies [Kuznetsov et al. 1967; Kozlov
and Ramodanov 2001; Kanso et al. 2005]. Here we see that such an

approach to swimming in water �ts the computational framework
we have built so far. Since the Kirchho� Ansatz uses no-through
boundary conditions, we can view the second summand in the
inertia metric tensor

 W
9 = U 9 � + V 9% 9

as an approximation of the contribution of the motion of boundary
vertex 9 to the kinetic energy of the �uid [Tu and Terzopoulos 1994].

2.2.2 Summary. All the settings we have seen so far are character-
ized by being either inertia or dissipation dominated with constant,
though not necessarily zero, angular and linear momentum. Some
settings though require accounting for both inertial and dissipa-
tive e�ects: The rock sinking in water would forever accelerate
were it not for dissipation or penetrate the sea �oor unless collision
forces stop it. More generally we may want to apply other external
forces. Any such scenarios are easily accommodated by extending
our basic method. Instead of integrating an equation constrained
by the constancy of momentum along the motion path, we now
have momentum varying according to the applied forces, be they
dissipative, collision induced, or otherwise (Secs. 3.1.1, and 3.1.2).

3 TIME DISCRETIZATION
We now turn our attention to time discretization. Starting with a
discrete time indexed sequence of shapes with = points each

Ŵ0, . . . , Ŵ) 2M = (R3)=,
our goal is to determine rigid motions 6C 2 SE(3) that position the
shapes (WC : 6C (ŴC )) according to the physical principles described
in the previous section. We discretize the energy as

E(W0, . . . ,W) ) :
)’
C=1

⇢ (WC�1,WC ),

where the two-point energy ⇢ (WC�1,WC ) discretizes the smooth inte-
grals by averaging the Riemannian metrics at the endpoints and
using linear displacements as discrete time derivatives as is standard
in variational time integrators [Marsden and West 2001]

⇢ (WC�1,WC ) :
D
1
2 (⌫

WC +⌫WC�1 )�?C ,�?C
E

�?C : ?C �?C�1, (4)

where ?C 2 (R3)= is the concatenation of all = point positions of WC .
One can check that ⇢ is equivariant with respect to the SE(3) action

⇢ (6(WC�1),6(WC )) = ⇢ (WC�1,WC ) 6 2 SE(3) .
Other discretizations of the energy per time edge can be used,
provided they respect this SE(3) symmetry.
In App. C we compute the Euler-Lagrange equations of the dis-

cretized energy, which determine constants of motion `C 2 R6 that
we call momenta of the changing shape

`C :
✓�Õ9 ?

C
9 ⇥ (⌫WC�1�?C ) 9 + ?C�19 ⇥ (⌫WC�?C ) 9
�Õ9 ((⌫WC + ⌫WC�1 )�?C ) 9

◆
. (5)

3.1 Time Integration
The unknown motion is uniquely determined by the constancy of
the momenta. Discrete time integration proceeds through iterative
placement of shapes preserving the momentum on each time edge
[C � 1, C] (Cor. 1 in App. B) as implemented in Algs. 1 and 2. For the
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non-linear solver needed in Alg. 2 we use SciPy’s Newton method
with a Krylov approximation of the inverse Jacobian.

Algorithm 1 — DiscreteMomenta(W, W̃ )
Input: consecutive shapes (W, W̃ )
Output: R6-momenta `
1: compute tensors ⌫W̃ ,⌫W
2: compute displacements �?̃  ?̃ � ?
3: `1  �Õ9 ?̃ 9 ⇥ (⌫W�?̃) 9 + ? 9 ⇥ (⌫W̃�?̃) 9
4: `2  �Õ9 ((⌫W̃ + ⌫W )�?̃) 9
5: `  

�
`1 `2

�>

Algorithm 2 — IntegrateMotion(`0, Ŵ0, . . . , Ŵ) )
Input: shapes and target momentum (`0, Ŵ0, . . . , Ŵ) )
Output: positioned shapes W0, . . . ,W)
1: W0  Ŵ0
2: for C = 1, . . . ,) do
3: 6C  solve DiscreteMomenta(WC�1,6C (ŴC )) = `0
4: WC  6C (ŴC )
5: end for

Ours Ours Ours Original video Weissmann & Pinkall

Fig. 12. Rigid bodies falling underwater with terminal velocity, resulting
from a balance between dissipative and gravitational forces (see Sec. 3.1.1).
Compare to actual video capture and the ever accelerating simulation
without dissipation from [Weißmann and Pinkall 2012]. Video 3:07.

3.1.1 Underwater Dynamics. In Fig. 12 we demonstrate a variety of
(rigid) bodies falling underwater with terminal velocity, which is
characterized by the balance between gravitational and dissipative
forces. This setting can still be accommodated by our �rst order
integration method. Speci�cally, we use a dissipation metric ⇡W for
Eq. (5) and modify the right-hand side in Step 3 of Alg. 2 to account
for the gravitational force and torque by setting

`C  �C rC�1, rC =
✓Õ

9 < 9?C9 ⇥ gÕ
9 < 9g

◆
(6)

for g the gravitational acceleration vector. This setting also admits a
simple treatment of collision with the �oor where penetration is
prevented by a reaction force of contact (Fig. 12). More generally
though one may need to go to a second order dynamics setting.

3.1.2 Transition to Second Order. As an example of a second order
treatment consider external forces such as gravity or dissipation
acting in an inertial setting. One way to accommodate the now
changing momentum with minimal modi�cation of our integration
scheme is to use the semi-implicit Euler scheme for second order
problems [Hairer and Wanner 2015]. In a �rst step the momentum is
explicitly updated by letting the force rC act for the duration of the
time step. Then we solve for the new position as a function of the
updated momentum in a second step, i.e., Step 3 in Alg. 2 becomes

`C  `C�1 + �C rC�1
6C  solve DiscreteMomenta (WC�1,6C (ŴC )) = `C .

Speci�cally, for the force of gravity, rC is chosen according to Eq. (6)
while for dissipation forces (Figs. 13 and 16), rC is chosen as `C from
Eq. (5) with a dissipation metric (⌫W set to ⇡W ).

Fig. 13. An Eel swimming modeled by second order dynamics (Sec. 3.1.2) in
an inertia dominated environment subject to dissipation forces. Video 2:56.

4 DISCUSSION
We have implemented our algorithm in SideFX’ Houdini and used it
for all simulations and visualizations shown. The full code is available
in the supplementary material. We use this section to discuss our
experiments which are also documented in the accompanying video.

4.1 Validation and Results
To validate the accuracy of our discrete time integration we consider
two scenarios: Purcell’s Scallop Theorem and the Dzhanibekov e�ect.
Purcell’s scallop theorem states that a cyclic shape change controlled
by a single degree of freedom cannot produce net motion in high
viscosity media [Purcell 1977]. Our time integration reproduces
this theorem up to the accuracy of our solver (Fig. 16 inset). The
Dzhanibekov e�ect, due to the intermediate axis theorem, states that
rotation around the intermediate inertial axis is unstable and leads
to periodic orientation changes while angular momentum remains
constant [Landau and Lifshitz 1976, p. 118]. Fig. 14 shows a half
cycle of this phenomenon and our integrator faithfully reproduces it
to within the accuracy of the solver.
To see how well our model for viscous media performs we have

run a number of comparisons with acquired data. Fig. 5 shows video
capture of spermatozoön motion. With the extracted shapes our
algorithm faithfully reproduces the initially observed motion. This
demonstrates that our model of viscous losses matches swimming
in very low Reynolds number �uid media well. Fig. 6 uses the same
model even though it is not strictly applicable. No less it works well
for simple snake motion. Fig. 3 shows an example of putting our
method to work for animator modeled shape changes.
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Fig. 14. Rotation about the intermediate inertial axis is unstable [Poinsot
1851] (see also [Landau and Lifshitz 1976, p. 118]), leading to periodic
orientation changes. Our algorithm keeps angular momentum constant
by construction which allows us to faithfully reproduce such instability
phenomena. Here a single (half) cycle is shown with the intermediate axis
marked as it traces out a 180� turn. Video 3:40.

Using acquired underwater video of a stingray as a reference, we
modeled its motion in a low-dissipation (high Reynolds number) en-
vironment (Fig. 1). Steering of our simulated stingray is summarized
in Fig. 15. Similarly, the jelly�sh (Fig. 8) moves in a low-dissipation
environment by its cyclic umbrella motion alone.

For settings involving a negligible medium we demonstrated the
orientation change of the astronaut through suitable arm motions
(Fig. 9). Another example of this type is the falling cat (Fig. 10)—which
we compare with the historic photographs of Marey [1894]—and the
platform diver (Fig. 11). For these examples we used simple skeleton
rigs animated through keyframing.

In some settings both inertial and dissipative e�ects are important.
Fig. 12 shows underwater motion at terminal velocity due to the
balance of gravitational and dissipative forces. This setting can still be
accommodated by our �rst order method (Sec. 3.1.1). More generally
though inclusion of external forces in an inertial setting requires
second order dynamics and an associated integrator (Sec. 3.1.2). As a
simple demonstration we consider the motion of an eel (Fig. 13). In
between cyclical “strokes” the eel brie�y stops changing its shape. In
a purely dissipative setup—such as what we used for the snakes—this
leads to a break in the forward motion. If instead we are in an inertial
setting with dissipation modeled as an external force the eel “glides”
during these breaks in the shape change, a more realistic result.

4.2 Performance
The examples we presented were computed in near real time when
run on an Apple M1 Max CPU. Table 1 provides an overview of

front view side view

front view side view

front view side view

front view side view

front view side view

Fig. 15. Underwater robot moving based on the same principle as the
stingray (see Fig. 1), indicating how it can be steered up/down as well as
le�/right. Video 4:09.

Fig. 16. According to Purcell’s scallop theorem [1977] single degree of
freedom shape change in a highly viscous medium yields no net motion
(inset). If inertia is accounted for, motion is possible. Video 3:31.

typical computation times and curve/mesh/graph resolutions. The
performance is seemingly una�ected by the number of vertices of
the input geometries, but rather depends on the di�culty of the
root-�nding problem (Sec. 3).

Table 1. Parameters and computation times of our algorithm (Sec. 3).

Fig. Data Vertices < 9 n
avg. Timesteps
per Second

1 surface 891 Area( 9 ) 1/4 13

8 surface 612 Area( 9 ) 1/10 19

5 curve 36 Length( 9 ) 1/2 10

6 curve 23 Length( 9 ) 1/20 141

3 curve 36 Length( 9 ) 1/20 64

9 graph 30 1 1 124

10 graph 37 1, (<legs = 1/5) 1 149

11 graph 30 1 1 100

13 surface 7100 Area( 9 ) 1 4

12 surface 524 Area( 9 ) 1/5 23

16 surface 190 1 1 85

14 graph 24 1 1 192

15 surface 600 Area( 9 ) 0 26

17 curve 51 Length( 9 ) 2/5 41

4.3 Limitations and Possible Refinements
For a shape-changing body in a medium with negligible inertia such
as air our basic algorithm is fairly complete and can include gravity
a posteriori. Similarly complete is the treatment of shape-changing
bodies in dissipation dominated environments, where any external
force and torque would directly appear as a right-hand side in the
equation that we solve in each time step (Sec. 3.1.1).

More general external forces though would need to be accounted
for by adding the currently acting torque and force to the—no longer
constant—angular and linear momentum (Sec. 3.1.2).

For a swimmer in an ideal �uid we assumed that the �ow around
the body is irrotational, which excludes phenomena where vortex
shedding plays a signi�cant role. In our current approach we treat
vorticity production as dissipative loss ignoring any possible e�ect
of the shed vorticity back onto the shape-changing body.
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Ours

Captured

Fig. 17. Motion capture data of a snake moving in complex ways (bot-
tom) [Graphics & Extended Reality Lab 2022] compared with the output of
our algorithm (top). Video 4:27.

Other limitations are due to the simplicity of our friction model.
Detailed models of snake locomotion account for non-linear friction
e�ects such as directionality of scales [Hu et al. 2009]. These are not
captured by viscous dissipation, making it di�cult for our method
to match complex motion capture data of real snakes with high
precision (Fig. 17). On the other hand, it is remarkable how well
such coarse approximations can work in settings which are far from
the abstract mathematical ideal.

5 CONCLUSION AND OUTLOOK
We presented a simple and e�cient algorithm for computing motions
e�ected by shape changes. The physical scenarios we considered are
distinguished as dissipation dominated or inertia dominated motion.
Our mathematical framework provides a uni�ed treatment of these
di�erent setups and leads to formally identical equations of motion.
Based on the constancy of momenta, the Euler-Lagrange equations
are �rst order ODEs and a standard variational integrator provides
for an accurate single step time integration.

So far we have used only very simple metric tensors. It would be
interesting to see what other physical scenarios can be modeled by
more elaborate tensors. As an example, consider a worm moving by
varying the thickness of its body, which can be modeled through
time-dependent (U 9 , V 9 ) (Fig. 18).

Frame 1

Frame 45

Frame 90

Frame 15

Frame 60

Frame 105

Frame 30

Frame 75

Frame 120

Fig. 18. Changing the weights< 9 according to varying the thickness the
earthworm starts crawling. Video 4:48.

Another interesting direction to explore is motion control: how
should shape changes be designed to achieve particular motion
objectives? Some initial experiments in the direction of steering are
depicted in Fig. 15 and used in the production of Fig. 1. We leave
exploration of the control problem to future work.
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A MOMENTUM OF MOTION TRAJECTORIES
The energy E of a curve W : [0,1] ! " in a Riemannian manifold
" is given by

E(W) = 1
2

π 1

0
|W 0 |2 .

We are interested in the critical points of E under variations that do
not change W except for a group of isometries.
Suppose there is a Lie group ⌧ acting on " by isometries, so

that " is �bered into orbits of ⌧ with projector c : " ! "/⌧ .
Accordingly the tangent bundle )" splits into the vertical space
+ = ker3c and the horizontal space � = +?,

)" = + � � .

In this situation, vertical (in�nitesimal) variations W̊ belong to �nite
variations of W that �x the image c (W).
To de�ne the notion of momentum let g = )Id⌧ denote the Lie

algebra of ⌧ . Then to every - 2 g we can construct an associated
vector �eld b- 2 �()") on "—if - = 60 (0), then b-? = (6 · ?)0 (0),
where the multiplication “·” denotes the action of 6 on an element
of" . Now de�ne a g⇤-valued 1-form `. For b 2 )?" and - 2 g let

`b (- ) : hb, b-? i.
The 1-form ` vanishes on the horizontal space and identi�es the
vertical space with the trivial bundle" ⇥ g⇤. The momentum of a
curve W is then de�ned as `W 0 .

T������ 2. In the situation above:
(1) A curve is a critical point of E under vertical variations with

�xed endpoints if and only if its momentum is constant.
(2) A curve is a critical point of E under all vertical variations if

and only if its momentum is zero.

P����. One direction basically follows from the well-known �rst
variational formula: If W̊ is a variation of W , then

E̊ = hW 0, W̊i
��1
0 �

π 1

0
hW 00, W̊i.

Thus, in both cases, criticality implies W 00 2 �W . In particular, since
⌧ acts by isometries, the action leaves E invariant and we get

0 = E̊ = hW 0, W̊i
��1
0 = `W 0 (1 ) (- ) � `W 0 (0) (- ),

for all - 2 g. The very same computation also holds for restrictions
of W to any sub-interval of [0,1]. So that we can conclude that a
critical curve W has a constant momentum `W 0 . In case W is critical
under arbitrary vertical variations one �nds that `W 0 (0) = 0 by using
vertical variations vanishing at 1.

Conversely, suppose the momentum is constant. Then, for any
- 2 g, we have

0 = (`W 0 (- ))0 = hW 0, b-W i0 = hW 00, b-W i + hW 0,rW 0 b- i = hW 00, b-W i,
where the last equality follows from rb- being skew-adjoint for b- a
Killing vector �eld. Since ⌧ acts transitively on �bers we conclude
that W 00 is horizontal everywhere. In both cases, criticality now again
easily follows from the �rst variational formula. ⇤

A.1 Example
To illustrate Thm. 2 consider a rigid body in Euclidean 3-space with
mass< 9 concentrated at �nitely many points ?1, . . . , ?= 2 R3. In
that case ⌧ = SE(3) and the motion obeys the principle of least
action, i.e., it is given by the critical points of

E(W) = 1
2

π 1

0

=’
9=1

< 9 |W 09 |2

under vertical variations �xing endpoints. The Lie algebra se(3) can
be identi�ed with R6—each - 2 se(3) is of the form

-? = l ⇥ ? + E, l, E 2 R3 .
The momentum of a curve W is given by

`W 0 (- ) =
=’
9=1

< 9 hW 09 ,l ⇥W 9 +Ei =
D =’
9=1

< 9W 9 ⇥W 09 ,l
E
+
D =’
9=1

< 9W
0
9 , E

E

consisting of two parts—the angular momentum l =
Õ=

9=1< 9W 9 ⇥ W 09
and the linear momentum p =

Õ=
9=1< 9W 09 (compare to Eq. (3))—and

the motion of the rigid body is determined through their constancy.

B DISCRETE MOTION TRAJECTORIES
Now suppose that for the sake of numerical computations we want
a time-discrete version of this problem. Then we are given a �nite
sequence of times and corresponding orbits "0, . . . ,") . We are
looking for a sequence W0, . . . ,W) of points WC 2 "C which is critical
for some discrete version

E(W) =
)’
C=1

⇢ (WC�1,WC )

of the smooth energy. Here we assume ⇢ is invariant with respect
to the action of ⌧ , ⇢ (6 · WC�1,6 · WC ) = ⇢ (WC�1,WC ) for all 6 2 ⌧ . We

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://www.digizeitschriften.de/id/252457811_1918?tify=%7B%22pages%22%3A%5B241%5D%2C%22view%22%3A%22toc%22%7D
https://arxiv.org/abs/physics/0503066
https://doi.org/10.1177/027836499801700701
https://doi.org/10.1177/027836499801700701
https://doi.org/10.1145/3306346.3322962
https://archive.org/details/thorienouvelled00poingoog/page/n9/mode/2up
https://doi.org/10.1119/1.10903
https://doi.org/10.1007/978-3-319-09351-2
https://doi.org/10.1073/pnas.1808675116
https://doi.org/10.1073/pnas.1808675116
https://doi.org/10.1017/S002211208900025X
https://doi.org/10.1017/S002211208900025X
https://doi.org/10.1119/1.15986
https://doi.org/10.1112/plms/s1-4.1.357
https://doi.org/10.1112/plms/s1-4.1.357
https://doi.org/10.1145/2010324.1964953
https://doi.org/10.1145/192161.192170
https://doi.org/10.1145/192161.192170
https://doi.org/10.2307/j.ctvzsmfc6
https://www.google.com/books/edition/Wissenschaftliche_Abhandlungen/veo0AQAAMAAJ?hl=en&gbpv=0
https://www.google.com/books/edition/Wissenschaftliche_Abhandlungen/veo0AQAAMAAJ?hl=en&gbpv=0
https://doi.org/10.1002/cav.1795
https://doi.org/10.1145/2185520.2185600
https://doi.org/10.1111/1467-8659.1510003
https://doi.org/10.1145/882262.882360


Motion from Shape Change • 1:11

now de�ne the momentum of the discrete curve W as

`C (- ) : (3WC�1⇢ (.,WC )) (b-WC�1 ) 8- 2 g. (7)

Where ⇢ (.,WC ) : "C�1 ! R and 3WC�1⇢ (.,WC ) denotes its di�erential
evaluated at WC�1 which is then evaluated at b-WC�1 2 )WC�1"C�1. This
provides us with a discrete analogue of Thm. 2.

T������ 3. In the situation above:
(1) A discrete curve is a critical point of E under vertical variations

with �xed endpoints if and only if its momentum is constant.
(2) A discrete curve is a critical point of E under all vertical varia-

tions if and only if its momentum is zero.

P����. Di�erentiating E with respect to a variation W̊ of W yields

E̊ =
)’
C=1

�
3WC�1 (⇢ (.,WC )) (W̊C�1) + 3WC (⇢ (WC�1, .)) (W̊C )

�
.

By the symmetry of ⇢, if 6 is a curve in ⌧ with 60 (0) = - 2 g, then
0 = ⇢ (6 · WC�1,6 · WC )0 (0) = (3 (WC�1,WC )⇢) (b-WC�1 , b-WC )
= (3 (WC�1,WC )⇢) (b-WC�1 , 0) + (3 (WC�1,WC )⇢) (0, b-WC ),

where we identi�ed )(WC�1,WC ) ("C�1 ⇥ "C ) = )WC�1"C�1 � )WC"C ,
which implies

(3WC ⇢ (WC�1, .)) (b-WC ) = �(3WC�1⇢ (.,WC )) (b-WC�1 ) = �`C (- ) .
For vertical W̊ there are -C 2 g such that W̊C = c-CWC , i.e., the tangent
vector �eld c-C on"C evaluated at the foot point WC . Thus, we obtain

E̊ =
)’
C=1

�
3WC�1 (⇢ (.,WC )) (ö-C�1WC�1 ) + 3WC (⇢ (WC�1, .)) (c-CWC )�

=
)’
C=1

�
`C (-C�1) � `C (-C )

�
.

Reordering for -C yields

E̊ = `1 (-0) � `) (-) ) +
)�1’
C=1

�
`C+1 � `C

�
(-C ). (8)

From this both claims follow. ⇤

A straightforward corollary to Thm. 3 provides a practical algo-
rithm for time stepping by solving a sequence of non-linear root
�nding problems:

C�������� 1. Let `0 2 g⇤ and suppose we determine a sequence
W = (W0, . . . ,W) ) by starting with an arbitrary W0 2 "0, then �nd
W1 2 "1 by solving `1 = `0 and so on. Then W is a critical point of E
under vertical variations �xing endpoints. If `0 = 0, then the sequence
is critical with respect to arbitrary vertical variations.

C DISCRETE EULER-LAGRANGE EQUATIONS
The placement of the shapes is characterized by the energy being
critical under all vertical variations. To this end we need to compute
variations of the two point energy ⇢ (WC�1,WC ) (Eq. (4)) with respect
to rigid motion of the shape at the beginning of the time interval
(App. B), i.e., in the �rst slot of ⇢

⇢̊ (WC�1,WC ) =
D
1
2 ⌫̊

WC�1�?C ,�?C
E
�
D
(⌫WC + ⌫WC�1 )�?C , ?̊C�1

E
. (9)

Now consider an arbitrary in�nitesimal Euclidean motion 6̊C�1 2
se(3), and denote by l and 1 the rotational and translational com-
ponents, i.e., 6̊C�1 (G) = l ⇥ G + 1.
Variations due to in�nitesimal translations follow easily since

⌫̊WC�1 = 0 when l = 0, eliminating the �rst term of Eq. (9). This
leaves us with ?̊C�19 = 1 for all 9 and

⇢̊ (WC�1,WC ) =
D
�

=’
9=1

((⌫WC + ⌫WC�1 )�?C ) 9 , 1
E
R3
.

For an in�nitesimal rotation (1 = 0) the �rst term in Eq. (9) can
be computed geometrically by using the SE(3) symmetry of our
setup. Let ⌦ 2 R3=⇥3= be block diagonal with all blocks equal to
the cross product matrix l⇥ 2 R3⇥3, and let �g : exp(g⌦) be the
resulting rotation of R3= . If we rotate WC�1 accordingly to obtain
WgC�1 : �gWC�1 then the SE(3) symmetry implies that for any vector
W̊ 2 R3=

h⌫WgC�1�gW̊, �gW̊i = h⌫WC�1W̊, W̊i.
It follows that ⌫WC�1 = �>g ⌫W

g
C�1�g , and by di�erentiating at g = 0

we deduce that

⌫̊WC�1 = [⌦,⌫WC�1 ] = ⌦⌫WC�1 � ⌫WC�1⌦.
Plugging this back into the �rst term of Eq. (9) givesD

1
2 [⌦,⌫

WC�1 ]�?C ,�?C
E
= �h⌫WC�1�?C ,⌦�?C i,

using the skew-symmetry of ⌦ and the symmetry of ⌫WC . Since
?̊C�1 = ⌦?C�1, we �nd that the second term of Eq. (9) equals

�
D
(⌫WC + ⌫WC�1 )�?C ,⌦?C�1

E
.

Taken together the energy variation induced by an in�nitesimal
rotation l is

⇢̊ (WC�1,WC ) = �
D
⌫WC�1�?C ,⌦?C

E
�
D
⌫WC�?C ,⌦?C�1

E
which simpli�es to

⇢̊ (WC�1,WC ) = �
D =’
9=1

?C9 ⇥ (⌫WC�1�?C ) 9 + ?C�19 ⇥ (⌫WC�?C ) 9 , l
E
R3
.

We collect the terms paired with l and 1 into `C 2 se(3)⇤ ⌘ R6

`C :
✓�Õ9 ?

C
9 ⇥ (⌫WC�1�?C ) 9 + ?C�19 ⇥ (⌫WC�?C ) 9
�Õ9 ((⌫WC + ⌫WC�1 )�?C ) 9

◆

and will refer to it as the discrete momentum to mirror the general
setup in App. B and in particular Eq. (7).
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